
Multi-Robot Map Updating in Dynamic
Environments

Fabrizio Abrate, Basilio Bona, Marina Indri, Stefano Rosa, and Federico Tibaldi ∗

Abstract Multi-robot systems play an important role in many robotic applications.
A prerequisite for a team of robots is the capability of building and maintaining
updated maps of the environment. The simultaneous estimation of the trajectory
and the map of the environment (known as SLAM) requires many computational
resources. Moreover, SLAM is generally performed in environments that do not
vary over time (called static environments), whereas real applications commonly
require navigation services in dynamic environments. This paper focuses on long-
term mapping operativity in presence of variations in the map, as in the case of
robotic applications in logistic spaces, where rovers have to track the presence of
goods in given areas. In this context classical SLAM approaches are generally not
directly applicable, since they usually apply in static environments or in dynamic
environments where it is possible to model the environment dynamics. This paper
proposes a methodology that allows the robots to detect variations in the environ-
ment, generate maps containing only the persistent variations, propagate thiem to
the team and finally merge the received information in a consistent way. The team
of robots is also exploited to assure the coverage of areas not visited for long time,
thus improving the knowledge on the present status of the map. The map updating
process is demonstrated to be computationally light, in order to be performed in
parallel with other tasks (e.g., team coordination and planning, surveillance).

F. Abrate
Istituto Superiore Mario Boella, via P.C. Boggio 61 10129 Torino, Italy
e-mail: fabrizio.abrate@ismb.it

B. Bona, M. Indri, S. Rosa, and F. Tibaldi
Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy
e-mail: {basilio.bona,marina.indri,stefano.rosa,federico.tibaldi}@
polito.it

∗ This work was supported by Regione Piemonte under the ”MACP4Log” grant (RU/02/26),
the “Piattaforma Tecnologica for the Internet of Things Project” and by Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR) under MEMONET National Research Project.

1

Indri
Typewritten Text

Indri
Typewritten Text
Authors' version - Published in: Springer Tracts in Advanced Robotics, 
vol. 83, pages 147-160, 2013

Indri
Typewritten Text

Indri
Typewritten Text



2 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

1 Introduction

Mobile robot systems have been involved in many successful applications including
museum guide robots, surveillance, planetary exploration, search and rescue [13].
To successfully accomplish these tasks, the robots shall be able to build maps of
unknown environments and to localize therein. The joint estimation of both the po-
sition and the map model is referred to as Simultaneous Localization And Mapping
(SLAM). While the maturity of SLAM in single robot scenarios is recognized in
many recent works, many issues arise when trying to extend these approaches to
multi-robot scenarios. One of the first multi-robot approaches is given in [8], where
a cooperative SLAM algorithm is proposed to merge sensor and navigation informa-
tion from multiple autonomous vehicles, on the basis of stochastic estimation and
feature-based landmark extraction from the environment. In [16] the Constrained
Local Submap Filter (CLSF) is exploited to create a local submap of the features in
the immediate vicinity of the vehicle, periodically fused into the global map of the
environment. This representation reduces the computational complexity of main-
taining the global map estimates as well as it improves the data association process.
Some approaches, as [5] and [9], are based on Rao-Blackwellized particle filters
(RBPF), while others [17] are based on Kalman filtering. The approach proposed in
[10] is based on manifold representation of maps. This approach has been mainly
designed to overcome limitations of existing SLAM methods, especially the sen-
sitivity to false data associations. Other approaches like [4] speed up mapping by
using multiple robots exploring different parts of the environment. In general, the
problems in multi-robot systems are still related to the need for team coordination
strategies and to the high computational and memory requirements depending on
the number of robots and the map size. Moreover service robotic applications have
to cope with intrinsically dynamic environments. Realistic applications require up-
dated maps of the environments that vary over time, starting from a given initial
condition. This is for instance the case of robotic applications in logistic spaces,
where robots have to track the presence of goods in certain areas. The goods are
stored in appropriate places, but during the day they can be removed and substituted
by other items many times. In these scenarios classical SLAM approaches are not
suitable, as it could be at least difficult or even impossible to model the dynamics
of the environment. Furthermore when dealing with very large environments the
memory requirements for multi-robot SLAM could become too high. The problem
of keeping an updated map of the environment in order to preserve the robots local-
ization, without investigating any specific goods tracking procedure, has been faced
in [3] for the single-robot case.
In this paper this solution is extended to a multi-robot scenario. The concept of time-
map is introduced to assign to each cell in the map a value representing its reliability.
This time-map is used to merge in an appropriate way the changes detected locally
by a robot and the updated maps received from the other team members. The effec-
tiveness of the approach is improved by a simple team coordination strategy, which
we propose to actively search for modifications in the map. Finally experimental



Multi-Robot Map Updating in Dynamic Environments 3

results of simulated and real tests are carried out to evaluate the effectiveness of the
algorithm and its computational load.

2 Problem Formulation
A team of mobile robots, each endowed with a laser rangefinder and wireless con-
nectivity, is supposed to be correctly localized with respect to the available environ-
ment map. Each robot is assumed to be in the position tracking state, as defined in
[1] and [2].
Each robot uses an occupancy grid map of the environment in the localization algo-
rithm to track its position over time. Such a map could have been manually created
or previously built by a SLAM algorithm.
At discrete time instants k the environment changes, and the robots have to modify
their map to take into account the variation. This phase is called ∆ -mapping step.
The set of new maps collected up to time k is defined as

M (k) = {Mk}, k = 0, . . . ,K.

M0 is the initial map, obtained by the SLAM procedure. The goal of the devel-
oped algorithm is to provide for each robot an estimate M̂k of the map at each time
step k. In order to take advantage of the multi-robot scenario these updated maps
must be shared with the other robots, and this information has to be merged in order
to create a map that is a good estimate of the current state of the environment.

Correct map merging is not sufficient; a coordination strategy of the team of
robots it also needed to maximize the number of detected variations, balancing at
the same the number of ∆ -mapping processes among the robots.

3 The Approach
The guidelines of the proposed approach are described hereafter, whereas details
about the specific processes of variations awareness, local ∆ -mapping and map
merging are given in Subsection 3.1.

In the proposed ∆ -mapping approach the concept of time-map is introduced to
merge properly the changes detected locally by a robot and the updated maps re-
ceived from the other team members.
In a grid map each cell represents the belief on the occupation value of the corre-
sponding area. Since the environment changes over time, the reliability of the stored
value for the cells decreases over time. Therefore to each cell in the map a value
in the range [0− 1] is assigned, related to the time passed since the cell has been
visited for the last time. The set of these values at each time step is called time-map
and defined as Tt .

The outline of the ∆ -mapping algorithm, which runs on board of each rover, is
described in Algorithm 1.

The algorithm takes as inputs the previous map M̂k−1 and the time-map Tt−1. p
and l are the current robot pose and the current laser range reading respectively, P
and L are two matrices collecting the values of p and l



4 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

Input: M̂k−1, Tt−1, p, l, P, L
Output: M̂k, Tt

1 Tt = updateTimeMap(Tt−1, p, l);
2 if received map M̂′ T ′ then
3 [M̂′k−1, Tt ] = mergeMap(M̂k−1, Tt , M̂′, T ′);
4 M̂k−1 = M̂′k−1;
5 end
6 if ∆ −awareness then
7 P = P+ p ;
8 L = L+ l;
9 else

10 if P! = /0 then
11 [M̂k] = updateMap(M̂k−1, P, L);
12 P = /0;
13 L = /0;
14 dispatchUpdatedMap(M̂k, Tt );
15 end
16 end

Algorithm 1: the ∆ -mapping algorithm

P =

 x̂1, ŷ1, θ̂ 1

...
x̂n, ŷn, θ̂ n

 (1)

L =

 l1

...
ln

 (2)

where the n-th entry is the last element stored. These matrices are used to create a
local ∆ -map containing the changes in the environment detected by the robot.

The time-map Tt is updated every time a laser scan is available to the robot; a ray
tracing procedure is applied for each angle of the scan, assigning a maximum value
equal to 1 to every cell crossed by a ray. At each time step all the values in Tt are
updated according to

Tt(i, j) = Tt−1(i, j) ·
(

1− ∆ t
Ct

)
(3)

where ∆ t is the time elapsed from the last update of Tt , and Ct is a time constant
which defines the forgetting speed.
The time-map update depends only on ∆ t, therefore a common timebase among the
team members is not required, avoiding the need of synchronization techniques over
the net.

The algorithm is divided in two parts. The first part (lines 2-4) is performed only
when the robot receives a map from another robot member of the team, while the



Multi-Robot Map Updating in Dynamic Environments 5

second part (lines 6-15) is performed only if a variation in the environment has been
detected.

If a robot receives a new map M̂′ and the relative time-map T ′, it updates the state
of its map and its time-map by merging them with M̂k−1 and Tt respectively (line
3). At this point the resulting map contains the modifications perceived by the other
robots (line 4).

If a modification is detected by the ∆ -awareness block, recalled in Section 3.1,
the algorithm stores the current robot pose and the relative laser range reading (lines
7-8).

If the ∆ -awareness block does not detect any modification and P and L are not
empty, a local ∆ -mapping is performed, following the approach recalled in subsec-
tion 3.1 (line 10). The content of these vectors is used to create a local ∆ -map ∆M̂,
then ∆M̂ is aligned and merged with the old map M̂k−1, to obtain an updated map
M̂k.

Finally the resulting map M̂k and the current time-map Tt are dispatched to the
other team members.

3.1 ∆ -awareness, local ∆ -mapping and map merging

In [3] the authors presented a single-robot approach that maintains an updated grid
map of a dynamic environment, assuming an initial occupancy grid map available.
The algorithm detects persistent variations in the environment and merges them with
the previous map by using limited computational resources. It is composed by four
blocks as shown in Figure 1.

Fig. 1 The local ∆ -mapping architecture.

The ∆ -awareness block detects persistent variations in the environment, using
a technique called weighted recency averaging, normally applied in tracking non-



6 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

stationary processes.
In this setting, the weighted recency averaging recognizes changes in the environ-
ment, under the hypothesis that the robot is correctly localized and never kidnapped.

The purpose of the Store Scan block is to select the laser scan readings suitable
for building the local updated sub maps. These readings are stored in L with the
corresponding robot poses stored in P.

The Scan Alignment block produces a ∆ -map performing a consistent registration
of the collection of scan readings contained in L. The approach maintains all the
local frames of data as well as the relative spatial relationships between local frames,
modeled as random variables and derived from matching pairwise scans or from
rover poses stored in P.

The Map Merge block merges the output of the Scan Alignment block with the
map M̂k−1. The goal of this block is to find a rigid transformation that overlaps ∆ -
map and M̂k−1, to create the current environment occupancy map M̂k. We adopted
the algorithm proposed in [6], based on Discretized Hough transform and bidimen-
sional correlation. The Discretized Hough transform finds the rotation that aligns
∆ -map with M̂k−1, then the bidimensional correlation is applied to compute the
translation that overlaps the two maps.

Local ∆ -mapping in this work is the application of the Scan Alignment and Map
Merge blocks.

In the updateTimeMap function in line 3 of Algorithm 1 the current maps M̂k−1
and Tt are updated according to M′ and T ′ received from the other robots. For all
the couples i, j every cell M̂k−1(i, j) is updated if its value is older than the corre-
sponding cell M̂′(i, j), so that the most recent (hence reliable) value is used. The
information about the reliability is given by the time-maps Tt and T ′.

When a robot receives a new map M̂′ and a time-map T ′ from another robot, it
merges the received time map with the previous map M̂k−1 and the local time-map
Tt in order to produce M̂′k−1. Tt is also updated. For all the couples i, j the value
of the cell M̂′k−1(i, j) is set equal to the cell M̂′(i, j) if T ′(i, j) > Tt(i, j), otherwise
it is set equal to M̂k−1(i, j). The value of the cell Tt(i, j) is set equal to T ′(i, j) if
T ′(i, j) > Tt(i, j), otherwise it is not modified. Figure 2 shows the map merging
process in a typical case. It can be noticed that changes received from another robot
and local changes detected by the local ∆ -mapping are merged in a consistent way.
Cells belonging to areas that have been recently mapped have high corresponding
time-map values (close to 1), so recent changes in the map resulting from a local
∆ -mapping process are not discarded.

4 Coverage strategy
A team coordination strategy that actively searches modifications in the map has
been developed. Without any coordination strategy all the robots could follow the
same path or leave some areas not visited for a long time. This problem can be
treated in partial similarity with the problem of multi-robot exploration. In the ex-
ploration approaches the aim is to discover a map starting from a completely un-
known environment. In the case considered, the initial map is known, as well as



Multi-Robot Map Updating in Dynamic Environments 7

(a) Environment state and robots pose

(b) M̂k−1 (c) M′ (d) M̂′k−1

(e) Tt (f) T ′ (g) Tt

Fig. 2 Figures show the map merging in a typical case: 2(a) shows the pose of the robots, Robot
1 receives a map from Robot 2 and it uses it to update its map; 2(b) is the current map, 2(e) is
the current time-map, 2(c) is the received map, 2(f) is the received time-map, 2(d) and 2(g) are the
resulting map and time-map after the merging process.

the robot pose, but since the environment is persistently changing (pallets are added
and removed), the reliability of the initial map decreases over time on the basis of
the number of changes in the environment. For this reason, areas that have not been
recently visited may become completely unknown, as the reliability of the map in
those areas is very low.

Areas that need to be covered are the ones for which the corresponding value of
the time-map is below a given threshold. For each robot, a set of points is extracted



8 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

to feed the path planning algorithms from a topological map, which is constructed
from the grid-map representing the areas to be visited.

Many approaches obtain a topological representation from a grid-map, such as
Voronoi diagrams [15] or topological operations [7]. The skeleton of an image is
a good representation of the geometrical and topological properties of its shape,
hence a morphological skeleton representation of the map is extracted using the al-
gorithm described in [12], which is proven to be fast. Aset of points belonging to
the skeleton is identified, with the constraint that each point has to be at a mini-
mum distance from every other point. Each point becomes one goal point for the
wavefront algorithm [11]. These goal points are then allocated to the team members
by a distributed market-based task allocation algorithm described in the following
subsection. Figure 3 shows how the goal points are obtained. In the time-map the
black cells have the highest reliability and the white ones have the lowest reliability.
In Figure 3(a) red points belong to the skeleton of the areas with reliability below
a given threshold. In this case the team is composed by three robots, so three goal
points are obtained as indicated in Figure 3(b).

(a) (b)

Fig. 3 Time-map and skeleton of areas to cover (a) and final goal points for three robots (b)

4.1 Distributed auction-based task allocation

Each goal point generated by the coverage strategy must be efficiently assigned to
one of the robots in order to minimize travel time.

The Hungarian method performs a combinatorial optimization to solve the as-
signment problem in polynomial time. It guarantees the optimal solution, but it is a
centralized algorithm, that requires a supervisor node and a matrix containing a row
for each robot and a column for each task. Each cell contains the cost for the relative
task. Moreover this approach requires the ability for all the robots to communicate,
but this condition is not assured due to unreliable WiFi communication.

The used approach is then based on auctions, and it has been developed starting
from the one proposed in [14]. Every goal point is assigned to an auction over a
multicast network channel; the robots that receive the auction compute and send



Multi-Robot Map Updating in Dynamic Environments 9

back a bid. The auctioneer assigns the task to the robot with the best bid. The bid is
computed according both to the robot’s current position and to its queue of pending
tasks. This approach does not guarantee the optimal solution, but it is robust to
communication failures. The auctioneer is always a different robot, thus avoiding
the problem of single point of failure.

5 Simulation Tests
The simulated environment of a logistic area already used in [3] and shown in Figure
4 is considered. The occupied green areas can be thought as containers or similar
items stored before distribution. The environment is 35×35 m, the green areas in
the center are 10×10 m and the corridors are 5 m wide.

Fig. 4 The simulation environment.

n = 3 rovers are endowed with wheel encoders, a laser range finder and a WiFi
board, and are able to localize themselves in the given environment. It is assumed
that, once the rovers are correctly localized, a virtual fork-lift adds or removes one
container every minute.
The rovers start moving with a simple obstacle avoidance policy. When the ∆ -
mapping process starts, the rovers move according to the coverage strategy de-
scribed in Section 4. The quality of the map over time and the localization error
are measured. The error on the estimate of the robot pose is strictly related to the
quality of the map. Every ∆ -mapping process induces some degradation of the map,
due to the localization error which cannot be fully compensated by the Map Merge
block.

Even after a consistent number of changes in the environment the rovers keep
a map that is consistent with the environment and therefore the localization error
remains low.



10 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

5.1 Simulation test 1

To demonstrate the effectiveness of the proposed approach first results related to
r = 10 averaged runs are provided, where the ∆ -mapping updating process lasts for
approximately two hours each run.
The localization error of the i-th robot is defined as the distance between the ground-
truth Cartesian position (xgt

i (t),y
gt
i (t)) and its Cartesian position estimation as

eρ

i (t) =
√
(xgt

i (t)− x̂i(t))2 +(ygt
i (t)− ŷi(t))2. (4)

We then define the average localization error for n robots over r runs as

eρ
n,r(t) =

1
r

r

∑
j=1

n

∑
i=1

eρ

i (t)
n

(5)

The localization error is reported in Figure 5(a). It can be noticed that the mean
localization error remains lower than 0.6 m after approximately 2.5 hours. The qual-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

e
ρ n

,r
(t

) 
[m

]

 

 

(a)

0 20 40 60 80 100 120 140
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

number of map variations

a
c
c
e
p
ta

n
c
e
 i
n
d
e
x

(b)

Fig. 5 Localization error and acceptance index for test 1.

ity of the map for the duration of the test is also inspected. Visual inspection is often
used, and numerical results by using the acceptance index described in [6] are also
provided. They can be used as a measure of similarity between the real map and the
estimated map.

Figure 5(b) shows the acceptance index mediate over the n = 3 robots and over
r = 10 runs. After 140 variations the value obtained is 0.97, which is comparable
with the one obtained with a typical grid-based SLAM algorithm (0.98).

5.2 Simulation test 2

Here the performances of the ∆ -mapping process in long term operativity are tested.
The simulation scenario is the same as for the previous test, but the virtual fork-lift
adds and removes containers every two minutes. In this test the map updating pro-



Multi-Robot Map Updating in Dynamic Environments 11

cess lasts for approximately 9.5 hours, for a total number of 328 variations. Figure
6(a) shows the localization error for a single run, while Figure 6(b) shows the ac-
ceptance index over 328 variations. The sudden increase of the localization error
after approximately 6 hours is due to one of the robots losing its localization for
a short period of time. However as the robot receives an updated map it is able to
recover itself. After 328 variations the acceptance index is still comparable with the
one obtained in the previous test (see figure 5.1). Moreover, this acceptance index
decreases to 0.97 after 9.5 hours, while in [3] the same error occurs after only 6
hours.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

t [h]

e
ρ n

,1
(t

) 
 [
m

]

(a)

0 50 100 150 200 250 300 350
0.94

0.95

0.96

0.97

0.98

0.99

1

number of map variations

a
c
c
e
p
ta

n
c
e
 i
n
d

e
x

(b)

Fig. 6 Localization error and acceptance index for test 2.

5.3 Simulation test 3

In this test the n = 3 robots perform different actions. The first robot performs ∆ -
mapping and sends map variations to the others team members; the second one
only receives map variations but does not perform ∆ -mapping; the last one neither
perform ∆ -mapping nor receives changes from the other team members. This test
demonstrates the advantage in receiving map updates from other robots.

Figure 7 shows the localization error eρ(t) for the three robots during a single
run. Robot 1 remains well localized, while for robot 3 the error increases after ap-
proximately 3800 seconds; localization error for robot 2 starts to increase after 4720
seconds. This is due to the fact that robot 2 is able to merge the map updates received
from robot 1, but this is still not sufficient in order to maintain a consistent map of
the environment.

5.4 Computational load

In Figure 8 the CPU usage and memory occupation for each robot are reported.
The algorithm runs on an Intel Core 2 Duo 2.4 Ghz with 2 GB of RAM. After
approximately one minute the simulated fork lift starts to remove and add pallets,



12 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

t [s]

e
iρ
(t

) 
[m

]

 

 

Robot 1

Robot 2

Robot 3

Fig. 7 Localization error for test 3.

and the ∆ -mapping process starts. The peaks in CPU usage and memory occupation
refer to the end of each local ∆ -mapping, while the peaks in CPU usage only refer
to the computation and assignment of the points to be visited. It can be noticed that
after the beginning of the ∆ -mapping process the memory usage steadily increases
by only 12 MB, with peaks corresponding to the last phase of each local ∆ -mapping
process.

0 2 4 6 8 10 12
0

10

20

30

40

c
p
u
 u

s
a
g
e
 [
p
e
rc

e
n
ta

g
e
]

0 2 4 6 8 10 12
130

140

150

160

170

180

t [min]

m
e
m

o
ry

 o
c
c
u
p
a
ti
o
n
 [
M

b
]

Fig. 8 CPU usage (upper plot) and memory usage (lower plot) in a simulated experiment.

6 Experimental Tests
An experiment in a real environment using two Pioneer P3DX robots has been car-
ried out. Each robot is endowed with a SICK LMS200 laser rangefinder and a WiFi



Multi-Robot Map Updating in Dynamic Environments 13

board. A 1× 1 m box has been placed in a 30× 3 m corridor, and a classical Rao-
Blackwellized SLAM process is first performed to obtain the map of the environ-
ment, as shown in Figure 9 (a). Then, the box is removed, R1 detects the absence
of the box while travelling in the corridor, performs a ∆ -mapping process and dis-
patches the map to R2, which updates its map (see Figure 9 (b)). Finally, the box
is placed again in the previous place and R2 detects the presence of the box while
travelling in the corridor, performs a ∆ -mapping process and dispatches the map to
R1, which updates its map (see Figure 9 (c)). It is worth noting that maps in Figure
9 (a),(b),(c) are the same for R1 and R2, even if they have not all perceived the same
variations at the same time.
This preliminary test demonstrates the effectiveness of the proposed methodology
in a simple but real scenario, since robots are able to merge the received maps from
team members in a consistent way.

(a) Initial map (b) Dispatched map after the
first change

(c) Dispatched map after the
second change

Fig. 9 The maps obtained during the experimental test.

7 Conclusions
In this work a methodology which is able to perform map updating in multi-robot
applications dealing with dynamic environments is proposed. This methodology en-
ables robots to detect variations in an environment, to generate an updated map con-
taining only the persistent variations, to send this map to the other team members
and to merge received maps in a consistent way. The approach is suitable for appli-
cations such as logistic applications, where a long-term operativity is required and
the algorithm has to be computationally light and to use limited memory, in order
to allow concurrent execution of other higher level services. Future works will be
devoted to extensive experimental tests in real environments and to improvements
of the coordination strategy.



14 F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi

References

1. Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Switching multirobot collaborative local-
ization in symmetrical environments. In: IEEE International Conference on Intelligent RObots
Systems (IROS 2008), 2nd Workshop on Planning, Perception and Navigation for Intelligent
Vehicles (PPNIV) (2008)

2. Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Three state multirobot collaborative local-
ization in symmetrical environments. In: Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, pp. 1–6 (2009)

3. Abrate, F., Bona, B., Indri, M., Rosa, S., Tibaldi, F.: Map updating in dynamic environments.
In: Proceedings of the 41st International Symposium on Robotics, pp. 296–303 (2010)

4. Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. Proceedings of the
IEEE 94(7), 1384 –1397 (2006). DOI 10.1109/JPROC.2006.876965

5. Carlone, L., Ng, M.K., Du, J., Bona, B., Indri, M.: Rao-blackwellized particle filters multi
robot slam with unknown initial correspondences and limited communication. In: in Proceed-
ings of IEEE International Conference on Robotics and Automation (2010)

6. Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3),
305–316 (2008). DOI http://dx.doi.org/10.1007/s10514-008-9097-4

7. Fabrizi, E., Saffiotti, A.: Extracting topology-based maps from gridmaps. In: IEEE Intl. Conf.
on Robotics and Automation (ICRA, pp. 2972–2978 (2000)

8. Fenwick, J., Newman, P., Leonard, J.: Cooperative concurrent mapping and localization. pp.
1810 – 1817 vol.2 (2002). DOI 10.1109/ROBOT.2002.1014804

9. Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. In: In
Robotics: Science and Systems, pp. 201–208 (2005)

10. Howard, A., Sukhatme, G.S., Matarić, M.J.: Multi-robot mapping using manifold representa-
tions. Proceedings of the IEEE - Special Issue on Multi-robot Systems 94(9), 1360 – 1369
(2006)

11. LaValle, S.: Planning Algorithms. Cambridge University Press (2004)
12. Maragos, P., Saffiotti, A.: Morphological skeleton representation and coding of binary images.

In: IEEE Trans. on Acoustics, Speech, and Signal Processing (1986)
13. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Berlin, Heidelberg

(2008). URL http://dx.doi.org/10.1007/978-3-540-30301-5
14. Smith, R.G.: The contract net protocol: High-level communication and control in a distributed

problem solver. IEEE Transactions on Computers C-29(12), 1104–1113 (1981)
15. Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile robot naviga-

tion. In: Proc. of the National Conference on Artificial Intelligence (1996)
16. Williams, S., Dissanayake, G., Durrant-Whyte, H.: Towards multi-vehicle simultaneous local-

isation and mapping. pp. 2743 –2748 (2002). DOI 10.1109/ROBOT.2002.1013647
17. Zhou, X.S., Roumeliotis, S.I.: Multi-robot slam with unknown initial correspondence: The

robot rendezvous case. In: Proceedings of IEEE International Conference on Intelligent
Robots and Systems, pp. 1785–1792




