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Abstract. This manuscript addresses the problem of optimization-
based Simultaneous Localization and Mapping (SLAM), which is of con-
cern when a robot, traveling in an unknown environment, has to build
a world model, exploiting sensor measurements. Although the optimiza-
tion problem underlying SLAM is nonlinear and nonconvex, related work
showed that it is possible to compute an accurate linear approximation
of the optimal solution for the case in which measurement covariance
matrices have a block diagonal structure. In this paper we relax this hy-
pothesis on the structure of measurement covariance and we propose a
linear approximation that can deal with the general unstructured case.
After presenting our theoretical derivation, we report an experimental
evaluation of the proposed technique. The outcome confirms that the
technique has remarkable advantages over state-of-the-art approaches
and it is a promising solution for large-scale mapping.

Keywords: Pose graph optimization, Simultaneous Localization and
Mapping, Mobile robotics.

1 Introduction

In several application scenarios (e.g., search and rescue, planetary exploration,
disaster response) mobile robots are deployed in an unknown environment and
are required to build a model (map) of the surroundings. The map is often used
for planning human intervention or for enhancing situational awareness. There-
fore, the mapping process is guided by three main requirements: (i) accuracy,
since a misleading representation of the environment can seriously compromise
the operation of human (or robotic) operators within the scenario, (ii) efficiency,
since it is crucial to have time-sensitive information on the environment, (iii)
scalability, since the robot may be in charge of mapping large areas.

Pose graph optimization has recently emerged as an effective problem for-
mulation for SLAM. In a pose graph, each node represents a pose assumed by a
mobile robot at a certain time, whereas an edge exists between two nodes if a rela-
tive measurement (inter-nodal constraint) is available between the corresponding
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poses. Inter-nodal constraints are usually obtained by means of proprioceptive
sensors (odometry) or exteroceptive sensor-based techniques (vector registration,
scan matching, etc.) [2]. Then, the objective of pose graph optimization is to es-
timate the nodes’ poses (pose graph configuration) that maximize the likelihood
of inter-nodal measurements. The utility of estimating the configuration of the
pose graph stems from the fact that, from the estimated poses and from sen-
sor measurements, it is then easy to construct a map of the environment. After
the seminal paper [12], several authors put their efforts in devising sustainable
and accurate solutions to pose graph optimization. Thrun and Montemerlo [17]
enabled the estimation of large maps using a conjugate gradient-based scheme.
Konolige [9] investigated a reduction scheme for reducing the number of nodes
involved in the optimization. Frese et al. proposed a multilevel relaxation ap-
proach for full SLAM [7]. Olson et al. [14] proposed the use of incremental
pose parametrization for improving efficiency and convergence. Grisetti et al. [8]
extended such framework, taking advantage of the use of stochastic gradient
descent in planar and three-dimensional scenarios. In [11] the authors presented
a general framework for the optimization of graph-based nonlinear error func-
tions. More recently, Sünderhauf et al. [16] stressed the topic of outliers rejection
in pose graph optimization, proposing a strategy for discarding erroneous loop
closure constraints. All the aforementioned techniques are iterative, in the sense
that, at each iteration, they solve a local convex approximation of the origi-
nal problem, and use such local solution to update the configuration [6]. This
process is then repeated until the optimization variable converges to a local min-
imum of the cost function. As a consequence, all mentioned techniques require
the availability of an initial guess for nonlinear optimization, which needs to
be sufficiently accurate for the technique to converge to a global solution of the
problem. A partial answer to these two problems (computational complexity and
need of an accurate initial guess) came from the work [3]. In [3] the authors pro-
posed a linear approximation for the pose graph configuration, assuming that the
measurement covariance matrices have a block diagonal structure. The approach
requires no initial guess and was shown to be accurate in practice.

In this article we extend and complement the previous work [3], proposing two
contributions: (i) we relax the hypothesis of structured measurement covariances
and we propose an approach that is able to deal with the full covariance case;
(ii) we present an extensive evaluation of the performance of the proposed ap-
proach, compared with the approach of [3] and with other state-of-the-art tech-
niques. The first contribution (Section 3) is more theoretical: we describe an
algorithm for estimating the pose graph configuration and we then prove that
it corresponds to a Gauss-Newton steps around a suitable suboptimal solution.
The algorithm is an extended version of the approach proposed in [3]; also the
proof proceeds on the same line, although it encompasses the more general case
of full covariances. The second contribution (Section 4) is experimental. We test
several state-of-the-art techniques on real and simulated datasets and we propose
a performance evaluation in terms of accuracy, efficiency, and scalability.
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2 Problem Formulation

The objective of pose graph optimization is to provide an estimate of the poses
assumed by a mobile robot, namelyX = {x0, . . . , xn}.X is called a configuration
of poses; the n + 1 poses are in the form xi = [p�i θi]

� ∈ SE(2), where pi ∈ R
2

is the Cartesian position of the i-th pose, and θi is its orientation. The input for
the estimation problem are m measurements of the relative pose between pairs
of nodes. For instance a measurement ξ̄i,j between nodes i and j is in the form

ξ̄i,j = ξi,j + εi,j =

[
R�

i (pj − pi)
〈θj − θi〉2π

]
+

[
εΔi,j
εδi,j

]
, (1)

where ξi,j is the true (unknown) relative pose between node i and node j, εi,j ∈
R

3 is the measurement noise, Ri ∈ R
2×2 is a planar rotation matrix of an

angle θi, 〈·〉2π is a modulo-(2π) operator that forces angular measurements in
the manifold SO(2), and εΔi,j and εδi,j are the (possibly correlated) Cartesian and
orientation noise. According to related literature, we assume εi,j to be zero mean

Gaussian noise, i.e., εji ∼ N (03, Pi,j), being Pi,j a 3 by 3 covariance matrix. ξi,j
describes the relative transformation that leads pose i to overlap with pose j.
We can rewrite each measurement as ξ̄ij = [(Δ̄l

i,j)
� δ̌i,j ]

�, where Δ̄l
i,j ∈ R

2

denotes the relative position measurement, and δ̌i,j ∈ SO(2) denotes the relative
orientation measurement. The superscript l in Δ̄l

i,j remarks that the relative
position vector is expressed in a local frame. By convention, the pose of the first
node is assumed to be the reference frame in which we want to estimate all the
other poses, i.e., x0 = [0 0 0]�.

In [3] the authors showed that the relative orientation measurements can be
made linear by adding a suitable multiple of 2π, i.e, 〈θj−θi〉2π = θj−θi+2ki,jπ,
with θi, θj ∈ R, and ki,j ∈ Z (ki,j is called regularization term). In this paper we
assume that the regularization terms have been correctly computed, according
to [3], and we call δ̄i,j the regularized measurements, i.e., we define δ̄i,j = δ̌i,j −
2ki,jπ. Then the measurement model becomes:

[
Δ̄l

i,j

δ̄i,j

]
=

[
R�

i (pj − pi)
θj − θi

]
+

[
εΔi,j
εδi,j

]
. (2)

Therefore, the maximum likelihood estimate of nodes configuration X attains
the minimum of the following cost function (see [3] and the references therein):

f(X) =
∑

(i,j)∈E

[
R�

i (pj−pi)−Δ̄l
i,j

θj−θi−δ̄i,j

]�
Ωi,j

[
R�

i (pj−pi)−Δ̄l
i,j

θj−θi−δ̄i,j

]
(3)

where Ωi,j = P−1
i,j is the information matrix of measurement (i, j). Pose graph

optimization reduces to find a global minimum of the weighted sum of the resid-
ual errors, i.e., X∗ = argmin f(X). In the following we use In, 0n, and ⊗ to
denote an identity matrix, a vector of all zeros, and the Kronecker product.
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3 A Linear Approximation

In this section we present the first contribution of this manuscript: a linear
approximation for problem (3) that relaxes the assumption of previous work [3].
In [3] it was assumed that Pi,j (and then Ωi,j) has the following structure:

Pi,j =

[
PΔ
i,j 02

0�
2 P δ

i,j

]
. (4)

Roughly speaking, this essentially requires that the relative position and relative
orientation measurements (that together give the relative pose measurement) are
uncorrelated. In order to present the subsequent derivation we need to rewrite
the cost function (3) in a more compact form. For this purpose we define the
unknown nodes’ position p = [p�1 . . . p�n ]

� and the unknown nodes’ orientation
θ = [θ1 . . . θn]

�; therefore the to-be-computed network configuration may be
written as x = [p� θ�]� (note that we have excluded from x the pose x0

that was assumed to be known). Then, we number the available measurements
from 1 to m and we stack the relative position measurements in the vector
Δ̄l = [(Δ̄l

1)
� (Δ̄l

2)
� . . . (Δ̄l

m)�]�, and the relative orientation measurements
in the vector δ̄ = [δ̄1 δ̄2 . . . δ̄m]�. Accordingly, we reorganize the measurement
information matrices Ωi,j , (i, j) ∈ E , into a large matrix

Ω
.
=

[
ΩΔ ΩΔδ

ΩδΔ Ωδ

]
, (5)

such thatΩ is the information matrix of the vector of measurements [(Δ̄l)� δ̄�]�.
Then, the cost (3) can be written as:

f(x)=

[
A�

2 p−RΔ̄l

A�θ−δ̄

]�[
RΩΔR� RΩΔδ

ΩδΔR� Ωδ

][
A�

2 p−RΔ̄l

A�θ−δ̄

]
(6)

where:

– A is the reduced incidence matrix of graph G, see [3];
– A2 = A⊗ I2 is an expanded version of A, see [1, 3];
– R = R(θ) ∈ R

2m,2m is a block diagonal matrix, whose nonzero entries are
in positions (2k− 1, 2k− 1), (2k− 1, 2k), (2k, 2k− 1), (2k, 2k), k = 1, . . . ,m,
such that, if the k-th measurement correspond to the relative pose between
i and j, then the k-th diagonal block of R is a planar rotation matrix of an
angle θi.

The residual errors in the cost function (6) are described by the following vec-
tor, whose entries represent the mismatch between the relative poses of a given
configuration x and the actual relative measurements.

r(x)
.
=

[
A�

2 p−RΔ̄l

A�θ−δ̄

]
(7)

Before presenting the proposed approach we anticipate the main intuition behind
the algorithm. The cost function (6) is quite close to a quadratic function, since
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the last part of the residual errors in (7) is linear, and the overall cost function (6)
becomes quadratic as soon as the rotation matrix R is known. Therefore, the
basic idea is (i) to obtain an estimate of nodes orientations θ exploiting the linear
part of the residual errors in (7), (ii) to use the estimated orientation to compute
an estimate of R, and (iii) to solve the overall problem in the optimization
variable x. This basic intuition is the same motivating [3], although here the
derivation is made more complex by the presence of the correlation between
position measurements Δ̄l and orientation measurements δ̄.

We are now ready to present the proposed linear approximation for pose graph
optimization, whose properties will be analyzed in Theorem 1.

Algorithm 1. A linear approximation for the maximum likelihood pose graph
configuration can be computed in three phases, given the relative measurements
Δ̄l and δ̄, the corresponding information matrix Ω, and the graph incidence
matrices A and A2:

1. Solve the following linear system in the unknown z
.
= [(Δl)� θ]�:

Ωz z = bz (8)

with:

Z =

[
I2m 02m,n

0m,2m A�

]
, and,

bz = Z�Ω
[
(Δ̄l)� δ̄�

]�
Ωz = Z�ΩZ

(9)

Call the solution of the linear system ẑ
.
= [(Δ̂l)� θ̂]�.

2. Compute an estimate of the quantity RΔ̄l in (7) from ẑ, preserving the

correlation with the estimate θ̂:

ŷ = T (ẑ)
.
=

[
R̂ 02m×n

0�
2m×n In

] [
Δ̂l

θ̂

]
=

[
τ1(z)
τ2(z)

]
z=ẑ

(10)

with R̂ = R(θ̂); compute the corresponding information matrix:

Ωy = (T̂Ω−1
z T̂�)−1 = (T̂−1)�Ωz(T̂

−1), (11)

where T̂ is the Jacobian of the transformation T (·):

T̂
.
=

[
∂τ1
∂Δl

∂τ1
∂θ

∂τ2
∂Δl

∂τ2
∂θ

]
=

[
R̂ J

0n×2m In

]
. (12)

3. Solve the following linear system in the unknown x = [p� θ�]�, given ŷ, see
(10), and Ωy, see (11):

Ωx x = bx (13)

with:
B =

[
A�

2 02m×n

0n×2n In

]
, and,

bx = B�Ωy ŷ

Ωx = B�ΩyB
(14)

The solution of the linear system (13) is the proposed linear approximation of
the pose graph configuration: x∗ = [(p∗)� (θ∗)�]�. ��
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The effectiveness of the linear approximation computed using Algorithm 1 is
assessed by the following result.

Theorem 1. Given the inputs {Δ̄l, δ̄, Ω,A,A2}, and assuming the information
matrix Ω to be positive-definite, the following statements hold for the quantities
computed in Algorithm 1:

1. Ωz, Ωy, Ωx are full rank;
2. The combination of the three phases is equivalent to applying a Gauss-

Newton step to the cost function (6), starting from the initial guess x̂ =

[p̂� θ̂�]�, with θ̂ =
[
AΩδA

�−AΩδΔΩ
−1
Δ ΩΔδA

�]−1
A
(
Ωδ−ΩδΔΩ

−1
Δ ΩΔδ

)
δ̄

and p̂ = (A2R̂ΩΔR̂�A�
2 )

−1A2R̂ΩΔΔ̄
l.

Proof. See Appendix. ��
The first claim assures the uniqueness of the outcome of the proposed algo-
rithm (no indetermination in the solution of the linear systems). The second
claim assures that the proposed approximation improves over an initial guess x̂,
applying a Gauss-Newton step. It is worth noticing that θ̂ can be rewritten as:

θ̂ =
[
AP−1

δ A�]−1
AP−1

δ δ̄, where P−1
δ =

(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
is the marginal in-

formation matrix of the orientation measurements δ̄. Therefore, the initial guess
θ̂ is the BLUE (Best Linear Unbiased Estimator) for θ, given the sole orientation
measurements, see [3]; moreover, p̂ is the optimal estimate of nodes’ positions,
under the assumption that the actual orientations of the robot coincide with
θ̂ [3]. The practical advantage of the algorithm is that x̂ is already quite close
to the optimal solution in practice, then the approximation is accurate in com-
mon problem instances. Moreover, the vector p̂ is not computed explicitly by the
approach, saving computation time.

4 Experimental Analysis

In this section we present the results of an extensive numerical evaluation on
optimization-based SLAM. We compare the methodology proposed in this paper
(Algorithm 1) with several state-of-the-art optimization approaches, namely a
Gauss-Newton method [12], TORO [8], g2o [11], and the linear approximation
proposed in [3]. The Gauss-Newton approach is a standard implementation of
the Gauss-Newton method for solving nonlinear least squares problems [13]. The
halting condition for this approach is based on the norm of the local correction.
Roughly speaking, if in two consecutive iterations the change in the configuration
is smaller than a threshold the algorithm stops. In our tests the threshold on the
norm of the local correction was set to 0.1. The results from TORO and g2o are
obtained using the C++ code available online [15]. For the tests we used default
settings for both approaches. Our implementations of the linear approximation
[3] and of Algorithm 1 are available online [4]. Also the implementation of the
Gauss-Newton approach we used in the test campaign was released online [4].
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The compared approaches are tested on publicly available datasets: Freiburg
Indoor Building 079 (FR079), MIT CSAIL Building (CSAIL), Intel Research
Lab (INTEL), Manhattan World M3500 (M3500), Manhattan World M10000
(M10000). The relative pose measurements of the datasets {FR079, CSAIL,
M3500, M10000} are available online [10], while the measurements of the dataset
INTEL were obtained through a scan matching procedure, from the raw sensor
data, available at [10]. The INTEL dataset is the same studied in [3]. The re-
lations available online [10] only describe the relative pose measurements, while
we are interested to test the behavior of the approaches for different measure-
ment covariance matrices. In particular, for each dataset we consider three vari-
ants, each one corresponding to a different choice of the covariance matrix. The
first variant (e.g., FR079-I) uses identity matrices as measurement covariances,
i.e., the noise of the relative pose measurement between node i and node j is
εji ∼ N (03, I3). The second variant (e.g., FR079-Ps) uses a structured covariance
matrix, as in eq. (4). The third variant (e.g., FR079-Pf) uses full covariance ma-
trices obtained as follows. According to the standard odometry model [18], we
parametrize the relative pose between node i and j as a rotation γ1

r , followed by
a translation γ1

t , and by a second rotation γ2
r , see Section 5.4 in [18]. Then, fixing

the uncertainty in the parameters, we can define the corresponding covariance
matrix for the relative pose measurement. For our numerical experiments we set
the standard deviations of γ1

r , γ
1
t , γ

2
r , to 0.05 rad, 0.05 m, and 0.01 rad, respec-

tively. For the sake of repeatability and for stimulating further comparisons with
related approaches the datasets considered in this paper were released online [4].

Fig. 1. Estimated trajectory for each of the considered datasets: (a) FR079, (b) CSAIL,
(c) INTEL, (d) M3500, (e) M10000

Accuracy. In Figure 1 we show some qualitative results for the proposed ap-
proach on the considered datasets (for simplicity we only show the variant with
the identity matrix as measurement covariance). For a quantitative evaluation
of the accuracy of the approaches, we recorded the optimal value of the cost
function (6), attained by each of the compared techniques. Since each approach
is required to minimize the cost (6), the best solution is the one attaining the
smallest value of the objective function. The results for the compared approaches
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and for each dataset are reported in Table 1. The Gauss-Newton method and
g2o attain the same solution (which is also the smallest observed cost function)
in most cases. This comes at no surprise since they both solve the original op-
timization problem without any approximation involved. Only in two scenarios
g2o performs worse than the Gauss-Newton method: in the INTEL dataset (in
which the initial guess is particularly bad), and in the M10000 dataset (which
contains a large number of nodes). The difference is explained as follows: g2o
applies a fixed number of iterations, then in the two mentioned cases, the it-
erations are not sufficient to reach the optimal value. TORO shows the worst
performance in all tests, due to the involved approximations, see [8]. The lin-
ear approximations of [3] (structured covariance) and the one proposed in this
paper (unstructured covariance) produce intermediate results. They are practi-
cally optimal in the first variants (I) of each scenario (using identity matrices
as covariances), and they are close to the Gauss-Newton solution in the second
variants (Ps). Only in the scenario INTEL the cost function was remarkably
larger than the Gauss-Newton approach, although being lower than TORO. It
is worth noticing that in the first and in the second variants of each dataset,
the linear approximation of [3] and the approach proposed in this paper attain
the same objective. This is due to the fact that the approach proposed in this
paper reduces to the linear approximation of [3] when the measurements covari-
ance matrices of the input data are structured (as it happens in the variants I
and Ps). The two approaches, instead, differ when measurement covariance is
unstructured, as in the Pf variant reported in Table 1. In this case the linear
approximation [3] simply neglects the correlation terms while the proposed ap-
proach can deal with the full covariance case. The numerical results show that
in the third variant (Pf ) of the datasets {INTEL, M10000} the proposed ap-
proximation remarkably improves the attained objective value. In the remaining
datasets, the difference between the linear approximations is small. We conclude
this paragraph by noticing that the proposed approximation and the approach
in [3] are more accurate than g2o on the large-scale dataset M10000.

Efficiency.The efficiency of the compared approaches is connected with the com-
putational effort that each method requires for producing the estimate of node
configuration. The average CPU time required by the compared approaches for
each of the dataset is reported in Table 1. The reported statistics are averaged
over 10 runs. The tests are conducted on a standard laptop, with an Intel Core i7
3.4 GHZ and 8 GB of RAM. The CPU times required by TORO and g2o are the
ones returned by the code available online. The Gauss-Newton method, the linear
approximation [3], and the approach proposed in this paper are implemented in
C++and use theCSparse library [5].Moreover, for the two linear approximations,
the CPU time includes the computation of the regularization terms [3].

From the table it is possible to see that the Gauss-Newton method, although
being very accurate, quickly becomes unsustainable for large datasets. TORO is
slightly faster, but still remains not competitive w.r.t. the other techniques. g2o
is highly optimized and allows a remarkable speed-up w.r.t. the Gauss-Newton
method. Table 1 highlights that the linear approximation [3] and the linear
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Table 1. Objective function values and average computation time (in seconds) for the
compared approaches

Linear Linear

Gauss-Newton TORO g2o
Approximation Approximation

(structured (unstructured

covariance) covariance)

I Objective 7.20E-02 7.20E-02 7.20E-02 8.60E-02 7.19E-02

Time (s) 5.80E-03 8.15E-03 1.99E-01 3.19E-01 1.05E-02

F
R
0
7
9 Ps Objective 3.94E+01 3.94E+01 3.88E+01 4.74E+02 3.89E+01

Time (s) 5.76E-03 7.87E-03 2.00E-01 3.39E-01 1.07E-02

Pf Objective 2.76E+02 2.90E+02 1.47E+02 8.99E+03 1.47E+02

Time (s) 5.81E-03 8.16E-03 2.00E-01 3.04E-01 1.06E-02

I Objective 1.07E-01 1.07E-01 1.07E-01 1.18E-01 1.07E-01

Time (s) 5.72E-03 7.55E-03 2.65E-01 2.89E-01 1.01E-02

C
S
A
IL Ps Objective 4.06E+01 4.06E+01 4.06E+01 2.41E+03 4.06E+01

Time (s) 5.53E-03 7.46E-03 2.01E-01 2.90E-01 1.01E-02

Pf Objective 2.45E+02 2.33E+02 1.57E+02 4.57E+04 1.57E+02

Time (s) 5.59E-03 7.50E-03 2.66E-01 2.88E-01 1.03E-02

I Objective 8.07E-01 8.07E-01 7.89E-01 1.17 7.89E-01

Time (s) 7.10E-03 9.49E-03 5.87E-01 4.15E-01 1.32E-02

IN
T
E
L Ps Objective 1.45E+04 1.45E+04 2.15E+02 1.03E+05 2.15E+02

Time (s) 7.01E-03 9.49E-03 4.90E-01 3.89E-01 1.31E-02

Pf Objective 1.51E+06 1.07E+05 3.95E+02 2.53E+07 1.08E+03

Time (s) 6.98E-03 9.47E-03 5.91E-01 4.01E-01 1.31E-02

I Objective 3.03 3.03 3.02 5.42 3.02

Time (s) 3.26E-02 4.04E-02 5.81 1.57 7.07E-02

M
3
5
0
0 Ps Objective 3.73E+03 3.73E+03 3.55E+03 2.18E+06 3.55E+03

Time (s) 3.25E-02 4.03E-02 4.84 1.61 7.06E-02

Pf Objective 1.15E+04 6.81E+03 2.09E+03 5.78E+08 2.09E+03

Time (s) 3.26E-02 4.05E-02 5.82 1.61 7.14E-02

I Objective 3.03E+02 3.03E+02 3.03E+02 3.29E+02 3.03E+02

Time (s) 3.55E-01 4.86E-01 2.21E+02 1.73E+01 6.93E-01

M
1
0
0
0
0

Ps Objective 1.99E+05 1.99E+05 1.98E+05 7.65E+06 2.28E+05

Time (s) 3.57E-01 4.89E-01 2.21E+02 1.83E+01 6.96E-01

Pf Objective 9.00E+05 9.61E+05 6.79E+05 2.07E+08 1.90E+07

Time (s) 3.55E-01 4.86E-01 4.11E+02 1.77E+01 6.91E-01

approximation proposed in this paper outperform all state-of-the-art techniques
in terms of computational time. In particular, they assure a reduction of the
computational time of 30−50%w.r.t. to g2o and improve the computational time
of orders of magnitude w.r.t. the other state-of-the-art techniques. We conclude
this section observing that the proposed approach is able to compute an estimate
of the configuration of a pose graph with 10000 nodes and 64311 edges in less
than 0.5 seconds.
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Finally a video showing an experimental test in which the edges of the graph
are obtained online using a scan matching algorithm is available online [4].

5 Conclusion

The contribution of this article is twofold: a linear approximation for optimization-
based SLAM and an extensive evaluation of the performance of state-of-the-art
approaches on benchmarking datasets. The first contribution includes the pre-
sentation of an algorithm for estimating an approximation of pose graph config-
uration. The algorithm is an extended version of the approach proposed in [3]
and can deal with the case of generic unstructured measurement covariance. The
second contribution includes an experimental analysis of pose graph optimiza-
tion approaches in terms of accuracy, efficiency, and scalability. As a results we
demonstrate that the accuracy of the proposed linear approximation is compa-
rable with the one of state-of-the-art techniques, although it requires a fraction
of their computational effort.

Appendix

In this appendix we report the proof of Theorem 1. We omit for brevity the
proof of the first claim, which is a straightforward extension of the results re-
ported in [3]. We instead prove the second claim by direct calculation. We need
to demonstrate that the outcome of the proposed algorithm is equivalent to
a Gauss-Newton step from the initial guess x̂ = [p̂� θ̂�]�. The structure of
the proof is the following: (i) we compute by direct calculation the solution of
the proposed approach x∗, (ii) we compute the estimate xGN , obtained from a
Gauss-Newton step with initial guess x̂, (iii) we show that x∗ = xGN . We start
by computing Ωz = Z�ΩZ:

Ωz =

[
ΩΔ ΩΔδA

�

AΩδΔ AΩδA
�

]

We can use blockwise inversion rule to compute the inverse of Ωz. Notice that
the explicit inverse needs not be computed in practice, since computationally
effective methods can be used to solve the sparse linear system (8). For the sake
of the proof, we instead evaluate:

Pz
.
= Ω−1

z =

[
Pz11 Pz12

Pz21 Pz22

]

with:

Pz22 =
[
AΩδA

� −AΩδΔΩ−1
Δ ΩΔδA

�]−1
,

Pz11 = Ω−1
Δ +Ω−1

Δ ΩΔδA
�Pz22AΩδΔΩ−1

Δ , Pz12 = P�
z21 = −Ω−1

Δ ΩΔδA
�Pz22 .

Then we can compute ẑ = Ω−1
z bz:

ẑ =

[
Δ̄l + Ω−1

Δ ΩΔδ

[
δ̄ −A�Pz22A

(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄
]

Pz22A
(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄

]
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If we call θ̂ = Pz22A
(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄, the vector ẑ can be written in com-

pact form as:

ẑ =

[
Δ̄l +Ω−1

Δ ΩΔδ

(
δ̄ −A�θ̂

)
θ̂

]
(15)

We can then compute ŷ and Ωy according to (10) and (11):

ŷ =

[
R̂Δ̄l + R̂Ω−1

Δ ΩΔδ

(
δ̄ −A�θ̂

)
θ̂

]
, Ωy = (T̂−1)�Ωz(T̂

−1)
.
=

[
Ωy11 Ωy12

Ωy12 Ωy22

]

with:

T̂−1 =

[
R̂ J

0n×2m In

]−1

=

[
R̂� −R̂�J

0n×2m In

]
, Ωy11 = R̂ΩΔR̂�

Ωy12 = Ω�
y12

= −R̂ΩΔR̂�J + R̂ΩΔδA
�

Ωy22 = AΩδA
�+J�R̂ΩΔR̂

�J −AΩδΔR̂
�J−J�R̂ΩΔδA

�.

Now we compute Ωx, its inverse Ω
−1
x , and bx, from which it is easy to derive x∗.

According to (3), Ωx can be written explicitly as:

Ωx
.
= B�ΩyB =

[
Ωx11 Ωx12

Ωx21 Ωx22

]

with:

Ωx11 = A2R̂ΩΔR̂�A�
2

Ωx12 = Ω�
x21

= −A2R̂ΩΔR̂�J +A2R̂ΩΔδA
�

Ωx22 = AΩδA
�+J�R̂ΩΔR̂

�J−AΩδΔR̂
�J−J�R̂ΩΔδA

�.

After long and tedious calculations we obtain Ω−1
x using standard blockwise-

inversion rules:

Px
.
= Ω−1

x =

[
Px11 Px12

Px21 Px22

]

with:

Px22 =
[
AΩδA

� + J�R̂ΩΔR̂�J − J�R̂ΩΔδA
� −AΩδΔR̂�J+

−(AΩδΔR̂�A�
2 − J�R̂ΩΔR̂�A�

2 )(A2R̂ΩΔR̂�A�
2 )

−1(A2R̂ΩΔδA
� − A2R̂ΩΔR̂�J)

]−1

Px12 = P�
x21

= −(A2R̂ΩΔR̂�A�
2 )

−1(A2R̂ΩΔδA
� −A2R̂ΩΔR̂�J)Px22

Px11 = (A2R̂ΩΔR̂�A�
2 )

−1 + (A2R̂ΩΔR̂�A�
2 )

−1(A2R̂ΩΔδA
� − A2R̂ΩΔR̂�J)×

Px22(AΩδΔR̂�A�
2 − J�R̂ΩΔR̂�A�

2 )(A2R̂ΩΔR̂�A�
2 )

−1.
(16)

From matrix-vector multiplication we also compute bx
.
= B�Ωy ŷ = [b�x1

b�x2
]�,

with:

bx1 = A2R̂
(
ΩΔΔ̄l −ΩΔR̂�Jθ̂ +ΩΔδ δ̄

)
bx2 = AΩδA

�θ̂ + J�R̂ΩΔR̂�Jθ̂ −AΩδΔR̂�Jθ̂ + AΩδΔΩ−1
Δ ΩΔδ δ̂+

−J�R̂ΩΔδ δ̄ − AΩδΔΩ−1
Δ ΩΔδA

�θ̂ + AΩδΔΔ̄l − J�R̂ΩΔΔ̄l.
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Finally we can calculate x∗ = Pxbx
.
= [(p∗)� (θ∗)�]�, with:

θ∗ = θ̂ + Px22

[
(J�R̂ΩΔR̂�A�

2 )(A2R̂ΩΔR̂�A�
2 )

−1A2R̂ − (AΩδΔR̂�A�
2 )×

(A2R̂ΩΔR̂�A�
2 )

−1A2R̂− J�R̂+ AΩδΔΩ−1
Δ

][
ΩΔΔ̄l +ΩΔδ(δ̄ − A�θ̂)

]
,

p∗ = p̂+ (A2R̂ΩΔR̂�A�
2 )

−1A2R̂
[
ΩΔδ(δ̄ − A�θ∗) +ΩΔR̂�J(θ∗ − θ̂)

]
,

where θ̂ = Pz22A
(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄ and p̂ = (A2R̂ΩΔR̂�A�

2 )
−1A2R̂ΩΔΔ̄l.

After obtaining x∗ we have to compute the outcome of the Gauss-Newton step
from x̂

.
= [p̂� θ̂�]�, since we claim that the result is the same. According to the

standard Gauss-Newton approach, a single step from the guess x̂ produces the
estimate xGN = x̂ + x̃, where x̃

.
= [p̃� θ̃�]� is the minimum of the quadratic

cost obtained by linearizing the residual errors in (6) around x̂. Let us start by
linearizing the residual errors in the cost function around x̂:

r(x̂+ x̃) ≈
[
A�

2 p̂+A�
2 p̃− R̂Δ̄l − Jθ̃

A�θ̂ + A�θ̃−δ̄

]
.
= r̃(x̃) (17)

Considering the linearized residue and evaluating the covariance matrix in θ = θ̂
the cost function (6) becomes quadratic:

f(x̃) ≈ r̃(x̃)�
[
R̂ΩΔR̂� R̂ΩΔδ

ΩδΔR̂� Ωδ

]
r̃(x̃)

.
= f̃(x̃) (18)

The global minimum of the previous cost function can be computed by taking
the gradient of the f̃ with respect to x̃ = [p̃� θ̃�]� and imposing it to be zero.
Let us compute the gradient with respect to the variable p̃ and θ̃:

∇p̃(f̃) = 2A2R̂ΩΔR̂�(A�
2 p̂− R̂Δ̄l + A�

2 p̃− Jθ̃) + 2A2R̂ΩΔδ(A
�θ̂ + A�θ̃ − δ̄)

∇θ̃(f̃) = −2J�R̂ΩΔR̂�(A�
2 p̂− R̂Δ̄l + A�

2 p̃− Jθ̃)− 2J�R̂ΩΔδ(A
�θ̂ + A�θ̃ − δ̄)+

+2AΩδΔR̂�(A�
2 p̂− R̂Δ̄l + A�

2 p̃− Jθ̃) + 2AΩδ(A
�θ̂ + A�θ̃ − δ̄)

The global minimum has to satisfy the following linear system of equations:

{∇p̃(f̃) = 02n

∇θ̃(f̃) = 0n
(19)

It is possible to explicit the unknown p̃ from the first equation in (19), writing
it in function of θ̃:

p̃ = (A2R̂ΩΔR̂�A�
2 )

−1A2R̂
[
ΩΔδ(δ̄ − A�θ̂ − A�θ̃) +ΩΔR̂�Jθ̃

]
.

Now we can substitute p̃ in the second equation of (19), obtaining a linear
equation containing only θ̃. Solving such equation we obtain:

θ̃ = Px22

[
(J�R̂ΩΔR̂�A�

2 )(A2R̂ΩΔR̂�A�
2 )

−1A2R̂+

−(AΩδΔR̂�A�
2 )(A2R̂ΩΔR̂�A�

2 )
−1A2R̂+

−J�R̂ + AΩδΔΩ−1
Δ

][
ΩΔΔ̄l +ΩΔδ(δ̄ − A�θ̂)

]
,

where Px22 is defined as in (16). We can finally compute xGN:

xGN = x̂+ x̃ =

[
p̂+ p̃

θ̂ + θ̃

]
=

[
pGN

θGN

]
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with:

θGN = θ̂ + Px22

[
(J�R̂ΩΔR̂�A�

2 )(A2R̂ΩΔR̂�A�
2 )

−1A2R̂ − (AΩδΔR̂�A�
2 )×

(A2R̂ΩΔR̂�A�
2 )

−1A2R̂ − J�R̂ + AΩδΔΩ−1
Δ

][
ΩΔΔ̄l +ΩΔδ(δ̄ − A�θ̂)

]
,

pGN = p̂+ (A2R̂ΩΔR̂�A�
2 )

−1A2R̂
[
ΩΔδ(δ̄ − A�θ∗) +ΩΔR̂�J(θ∗ − θ̂)

]
.

By inspection, it is easy to verify that pGN = p∗ and θGN = θ∗, hence proving
the second claim of Theorem 1.
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