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Abstract. This paper presents a fast approach for marker-less Full-
DOF hand tracking, leveraging only depth information from a single
depth camera. This system can be useful in many applications, ranging
from tele-presence to remote control of robotic actuators or interaction
with 3D virtual environment. We applied the proposed technology to en-
able remote transmission of signs from Tactile Sing Languages (i.e., Sign
Languages with Tactile feedbacks), allowing non-invasive remote com-
munication not only among deaf-blind users, but also with deaf, blind
and hearing with proficiency in Sign Languages. We show that our ap-
proach paves the way to a fluid and natural remote communication for
deaf-blind people, up to now impossible. This system is a first prototype
for the PARLOMA project, which aims at designing a remote commu-
nication system for deaf-blind people.

Keywords: Real-time Markerless Hand Tracking, Hand Gesture Recog-
nition, Tactile Sign-Language Communication, Haptic Interface

1 Introduction

The problem of tracking human hands joints, recognizing a wide set of signs,
from single marker-less visual observations is of both theoretical interest and
practical importance. In the last years promising results in terms of performances
and robustness have been achieved due also to rapid advances in modern sensing
technologies.



Many approaches have been presented in the hand gesture recognition area
[27,16,20]; they differ in the used algorithm, in the type of camera, in the theo-
retical justifications, etc. Due to recent lowering in prices, new data sources have
become available for mass consumers, such as time-of-flight [7] and structured
light cameras [5], which ease the task of hand gesture recognition. Indeed, a ro-
bust solution has yet to be found, as existing approaches very often require an
intensive tuning phase, the usage of coloured or sensitized gloves, or a working
framework which embed more than one imaging sensor. Currently, traditional
vision-based hand gesture recognition methods do not achieve satisfactory per-
formances for real-life applications [15]. On the other hand, the development
of RGB-D cameras, able to generate depth images with few noise also in very
low illumination conditions, has recently accelerated the process of investigating
for innovative solutions. In addition, the advent of modern programming frame-
works for GPUs enable real-time processing even for complex approaches (i.e.,
that do not rely on too simplistic assumptions), that otherwise would be much
slower if executed in CPUs.

Hand gestures are a natural part of human interaction, both with machines
and other humans. As they represent a simple and intuitive way of conveying
information and commands (e.g., zoom in or out, drag. .. ), hand gesture recog-
nition is of great importance for Human Machine Interaction (HMI) as well.
Human interaction is widely based on hand gestures, above all when subjects
with severe disabilities are involved and speech is absent, as in Sign Language
(SL) based interaction. In both these fields (HMI and SL based interaction) it is
necessary to provide support for real-time unaided gestures recognition, as mark-
ers or gloves are cumbersome and represent a hindrance to natural interaction.
It is preferable to develop a system which relies on a single camera and does not
require any calibration or tuning phase. Extensive initialization would represent
a barrier for users which are not comfortable with technology, in particular when
severe disabilities such as deaf-blindness are targeted.

Indeed, deaf-blind people can use neither vocal mean nor standard SLs, in the
latter case because they are not able to perceive the meaning expressed by the
signer. For this reason their communication is based on a different mechanism:
the receiver’s hands are placed on the ones of the signer in order to follow
the signs made. Since the communication is still based on SL, but with tactile
feedback, this variant is called tactile SL (tSL). Therefore, while it is possible for
two normal speakers or two deaf signers to communicate in presence or remotely
(either through phone calls or video-calling systems), as of now, there is no way
for two deaf-blind persons to communicate with each other if they are not in the
same place, given the basic need to touch each other’s hands. Moreover, one-to-
many communication is not possible, and the same signs must be repeated in
front of each listener if the same message should reach many different persons
[19].

In this context, the PARLOMA project! aims at designing a system able to
capture messages produced in SL and reproduce them remotely in tSL, in order

! http://www.parloma.com



to overcome the spatial limitation posed by tSL communication. Indeed, the
project poses the bases for the experimentation of a “telephone for deaf-blind
people”.

In this paper, we present a sophisticated approach to make the remote com-
munication between deaf-blind people feasible. The proposed solution is based
on a reliable marker-less hand gestures recognition method, which is targeted
to recognize static signs from Italian SL (LIS) and is able to work up to 30 fps,
that is the maximum operating frequency of the Kinect sensor?.

To show its effectiveness, in addition to a quantitative and qualitative anal-
ysis, we also present an experimental apparatus in which signs from a subset of
LIS hand spelling alphabet are recognized and sent remotely over the Internet,
so that a compatible robotic actuator can reproduce them and any listener with
proficiency in LIS can understand the meaning of what is signed. This work is
a first step toward complete remote deaf-blind communication, in which more
complex and also dynamic signs will be recognized.

This paper is organized as follows: Section 2 lists already existing related
works, Section 3 discusses theoretical background and practical implementation
of our solution, Section 4 presents results from our experiments and summa-
rizes the pipeline of the remote communication system we developed and finally
Section 5 presents some conclusion.

2 Related works

This paper relies on hand tracking, anthropomorphic robots and data transmis-
sion over the web. In this Section, state-of-the-art approaches on these topics
are briefly discussed.

2.1 Hand Tracking

Object tracking techniques can be divided into two main classes: invasive ap-
proaches, based on tools physically linked to the object (e.g., sensitized gloves
[18] or markers [28]), and non-invasive approaches. The former are usually fast
and computationally light, but also very expensive and cumbersome. The latter
require more computational resources, but are based on low-cost technologies
and do not require a physical link to the object to be tracked.

Non-invasive approaches proposed in literature (as in [22]) can be classified
according to the kind of information in input they need (2D or 3D) and out-
put they provide. Obviously, as real world life is embedded in a 3D universe,
best performances are obtained when 3D features characterization is performed.
Moreover, relying on 3D input information makes a visual system more robust
and accurate [13].

Thanks to technology evolution though, it is nowadays possible to obtain
reliable features extraction from confused backgrounds by trying to isolate and

2 http://msdn.microsoft.com/en-us/library/jj131033.aspx



segment the object to be recognized (e.g., a human hand). In fact, 3D information
may be obtained by depth maps that are automatically calculated by acquisition
system using cheap RGB-D cameras.

Non-invasive approaches are classified into partial tracking and full tracking:
tracking is defined as partial when it requires only information on a subset of in-
put DoF [22] (e.g., only thumb and index in case of partial hand tracking), while
it is said to be full when all the DoF are taken into account for computation. Of
course, full tracking approaches are the best in terms of accuracy and robust-
ness, but they also require a lot of computational resources [10]. Full tracking
solutions can be divided into model-based and appearance-based approaches.

Model-based approaches [12] are based on a 3D model representing the object
to be tracked. These approaches seek for the 3D model parameters that mini-
mize the discrepancy between the appearance and 3D structure of hypothesized
instances of the model and actual observations. The problem is usually solved
using probabilistic optimization approaches [25] or evolutionary algorithms [20],
leading to accurate results, but requiring a lot of computational resources.

Appearance-based techniques are based on special points (features) extracted
from input data. An algorithm tries to directly map the extracted features to
the hand configuration (i.e., the pose). Appearance-based algorithms are often
implemented using machine learning [24] or database-retrieval [4] techniques.
Learning how to map features and model configurations is the most computa-
tional intensive phase. Since this task is performed off-line, appearance-based
techniques easily achieve real-time performances. The accuracy of these algo-
rithms is strongly related to the quality of the training set or database, partic-
ularly to its variety and capacity to cover the set of poses.

2.2 Anthropomorphic Haptic Interfaces

Haptic devices elicit human perception through the sense of touch. Haptics there-
fore extends the communication channels for human-machine interaction, in ad-
dition to the typical senses, such as vision and hearing. Haptics includes wearable
devices, such as gloves, and robotic devices, such as arms and hands. With re-
spect to robotic hands, despite the significant progress in the last decades in
electronic integrated circuits and in applied computer science, current systems
still lack in dexterity, robustness and efficiency, as well as in matching cost con-
straints [9]. Examples of dexterous robotic hand for humanoid robotics are the
Awiwi Hand [14] and the Shadow hand [26].

In prosthetics, electro-actuated hands have been commercially available since
the early 70s: the major manufacturer is Ottobock (Austria), followed by other
few companies. Recently two commercial prosthetic hands with greater Degree
of Freedom (DoF) have been introduced to the market: the i-limb (developed
by Touch Bionics in 2007) and BeBionic (developed by RSL Steeper in 2010)
prostheses. Both hands are capable of different grasping patterns thanks to five
individually-powered digits, but their functionality is limited by the passive
movement of the thumb abduction/adduction joint. Most of current commer-



cial prosthetic hands are very simple grippers with few active DoF and poor
cosmetic appearance, however major research progresses are being achieved [21].

2.3 Transmission

Remote control of robotic actuators is nowadays a well studied task, investigated
above all in surgery [3]. For what concerns the transmission of human movements
to the robotic hand in this project, we evaluated different scenarios trying to
maintain the infrastructure as simple as possible, as this will naturally lead to a
simple, fast to develop and robust pattern of communication.

3 The developed solution

The proposed system is designed in order to accomplish to three different tasks:
(1) sign acquisition and recognition (front-end), (2) sign conversion and trans-
mission, (3) sign synthesis (back-end); that are performed by three different
sub-blocks, i.e., the input module, the transmission module and the robotic hand
module.

The input module is connected to a depth camera (the acquisition device)
and is able to identify signs made by the human hand in front of the device. The
transmission module is in charge of encoding the information generated by this
first block, sending them through the web, and decoding them in a way that is
suitable for the last block. Finally, the robotic hand module is composed by the
robotic haptic interface and by a controller that uses the information from the
first module to control robotic hand in a proper way.

3.1 The Input Module

The proposed implementation of the input module follows the work proposed in
[16], where authors propose a full-DoF appearance-based hand tracking approach
that uses a random forest (RF) classifier [23]. RF is a classification and regression
technique that has become popular recently due to its efficiency and simplicity
[16].

In the proposed system, a low-cost depth-camera (see Fig. 1), is used as
only input to the hand segmentation phase, that is the task of isolating hand
from the background (RGB information is discarded). Once foreground pixels
have been recognized and separated from background, the hand pose can be
reconstructed, resorting to two main blocks, that are the hand labelling block
and the joints position estimating block. Hand labelling is an appearance-based
method that aims at recognizing single sub-parts of the hand in order to isolate
the joints, while the joints positions estimation block aims at approximating the
joints 3D position starting from the noisy labelling and depth measurements.
As done in [23], in our approach the RF classifier is employed to label pixels
of the depth-image according to the region of the hand they should belong to,
and than clusters each region in order to find the position of the centre of that



Fig. 1: The hand tracking input system.

region. Regions are chosen in order to be centred over the joints of the hand, so
that, at the end of the clustering process, the algorithm outputs the 3D position
of each joint of the hand.

The developed code can recognize 22 different sub-parts of the hand, which
are palm, wrist and 4 joints for each of the fingers. Each part is centred around a
specific joint. Parts are tagged with different encoding and the tags are visually
represented by different colours.

The hand is first segmented by thresholding depth values. The segmented
hand is isolated from the background and tracked resorting to OpenNi tracker
[1]. Finally, a point cloud for further processing is obtained, taking into consid-
erations all the points within the sphere centred in the centre of the tracking
and with a conservative radius 7.

To label the hand, an approach based on machine learning algorithms has
been developed. Basically, at the very beginning, a RF classifier [6] is trained
on thousands of different hands performing different signs, also turned or ori-
ented differently. The classifier reads and examines such signs, and calculates
the same feature for all of them; then, it keeps the more discriminative features.
Such features can be later used to distinguish, with a certain confidence, the
different hand sub-parts, and especially pixels that belong to different labels. Fi-
nally, the joints position is approximated applying the mean shift clustering [8]
algorithm on the hand sub-parts. This approach provides promising results: first
experiments with real-world depth map image show that it can properly label
most parts of the hand in real time without requiring excessive computational
resources.



Fig. 2: 3D model in different poses used to generate the synthetic training set.

In our approach we perform a per-pixel classification, where each pixel x of
the hand is described using the following feature

F) = { FanT) = 1(X+I<j>,||u||<3,||v||<3 W

j€(uv) x)

where I is the depth-image so that I(-) represent the depth value of the image
at a given point, while u, v are two offset limited to a finite R length.

We use this feature because, in combination with RF, it has proved to very
quickly succeed in discriminating hand parts, as shown in [16]. Hand poses can
be estimated by labelled segmented hands resorting on mean shift [8]. Also, we
resort on the mean shift local mode finding algorithm (as in [24]) to reduce the
risk of outliers, that might have a large effect on the computation of the centroids
for the pixel locations belonging to a hand part. In such a way, we obtain a more
reliable and coherent estimation of the joints set S.

Note that (1) is not invariant to rotations, while in the other hand it is
invariant to distance and 3D translations (thanks to the normalization factor
I (x)). So, it is necessary to build a wide training set composed of the same sign
framed from different point of view; for this reason, we have also investigated
ways to effectively and automatically build comprehensive large train sets.

To train the algorithm, a training set with labelled samples is necessary.
Since manually building a dataset is a tedious, time-consuming and error-prone
process, a system able to create a synthetic training set was developed. Such
system is based on the 3D model of a human hand shown in Fig. 2. Some
examples of the outcomes of the synthetic training tool are shown in Fig. 3.

Main parameters describing the RF we trained were chosen as the ones pro-
viding best results after several tests and are summarized in Table 1. Each tree
we use is trained with 2’000 random pixels from each training image. Offset
vectors u and v from (1) are sampled uniformly between -30 and 30 pixels.

Finally, using a look-up table, the module converts the recognized hand pose
in a list of 19 joints positions, that represents the angular positions that each



Fig.3: Outcomes from the synthetic training tool: depth images and related
labeling in 3 different poses.

1 2 3 s 18 19 CRC

Joints Angular Positions over 19 Bytes 2 Bytes

Fig. 4: Structure of the packet with the joints positions.

joint of the hand have to reach in order to perform the sign. Global hand rotation
(3 DOF) is at the moment discarded as the robotic hand used cannot rotate over
the palm base.

3.2 The Transmission Module

Remote communication is implemented using a client - server socket architecture.
The client is in charge of coding the sign coming from the input module, creating
a proper packet for remotely sending needed data; this packet is also encrypted
for secure communication. On the other side, the server is in charge of receiving
and decrypting packets, and to decode commands in a suitable way for the hand
control module.

The client gets the 19 joints positions, coming from the input module (as
shown in Section 3.1). Each position ranges from 0 to 180 degrees, so it is en-



Table 1: Optimal values we propose to train the RF classifier.

Parameter Value
U,V Offsets 30 pixel
Features extracted per image 2’000
Threshold 10
Sample pixels per image 2’000
Tree depth 18
Number of trees 3

coded with an unsigned Byte, where the value “180 degrees” is mapped with
the maximum number representable (255) and linear scaling is used. Then a
16-bit CRC check is applied to detect potential errors in the transmitted packet.
The generated CRC signature is joined to the packet (as in Fig. 4), and then
encrypted using a robust cipher algorithm, AES [11]. The output of the cypher
operation is an unintelligible string over 108 Bytes.

A TCP socket is opened to build a communication bridge between the client
itself and the server, to send the encrypted list of positions.

The server is in charge of receiving and decrypting packets in order to retrieve
the position of each of the robotic fingers. Finally, the received information are
shared with the hand controller. Then, the robotic hand module is triggered
when new data are available.

Failures in the network, such as unilateral unattended errors or crashes within
the communication, are well managed by the code, in which ad-hoc exceptions
handlers are implemented.

3.3 The Robotic Hand Module

Particular attention must be paid on what concerns the robotic hand, as this
is one of the most important points in the solution communicative chain. The
hand must be solid, very precise and user-friendly, combining well packaged
mechanical components with a cosmetic glove able to mimic as much as possible
the characteristics of human skin.

To develop a first prototype of the solution, a programmable anthropomor-
phic human-sized hand, EH1 Milano series, has been used. This is a versatile
device for multiple research scenarios, produced by Prensilia s.r.l..

Such hand comes with 6 DoF, and the five compliant fingers are indepen-
dently driven by electrical motors, by means of tendon transmission. The thumb
abduction/adduction actuator is placed within the palm, whereas the fingers
bending/extension motors are hosted into what could be thought as the fore-
arm, a mechanical platform that represents a support for the hand itself and
contains all the electronics needed to control the six motors and to communicate
with a PC [2].

Communication with the hand is performed using the serial standard; in
order to connect the hand to a standard laptop, an USB to serial converter has



10

been used. The serial commands that have to be sent to the hand-side serial
port, in order to make the hand move and reproduce signs, have been encoded
in a demo program by means of a vocabulary that associates the list of six motor
positions with the sign to be reproduced.

Each time the controller is triggered by the transmission module, it synthe-
sizes the joints position in the commands needed by the actuators of the robotic
device. Finally, it sends the commands to the robotic hand.

3.4 Implementation of the system

For the tests that are described in the next Section, a Raspberry Pi acts as server
and hand controller, while a Laptop PC is used as client-side to compute sign
acquisition.

Raspberry Pi? is a credit card size computer with low-cost hardware running
Linux. The choice is motivated by the fact that, operations such as package
decrypting and hand controlling do not require a powerful device.

A Notebook PC equipped with Intel Core i5-2450M @2.50GHz and 8 GB
of RAM, running Ubuntu 13.10 OS is used to run all the algorithms regarding
the input module, since image processing (coming from a PrimeSense? depth
camera) requires much more computational power. On this machine, the whole
acquisition system processes 30fps, thus achieving real-time performances. All
the code is written in C/C++ and Python 2.7, using Open Source Software.

A video showing the proposed solution can be seen at the PARLOMA YouTube
channel page®.

4 Experimental results

This Section summarizes results of some of the experiments we have performed
to test the effectiveness of the proposed approach. These experiments aimed at:
(1) evaluating the ability in recognizing signs in LIS (input module); (2) tuning
the remote control of the robotic hand (robotic hand module); (3) assessing the
effectiveness in transmitting the information over the whole pipeline; (4) getting
feedbacks in order to fix potential errors and problems. In particular, the input
module has been more intensively tested, as the ability of recognizing reliably
and quickly SL signs is of crucial relevance for the whole system.

4.1 Input Module Validation

For what concerns the classification, we report both the average per-class accu-
racy and the hand gesture recognition accuracy. The first metric highlights how
many times each pixel is labelled correctly by the classification layer. Results,

3 http://www.raspberrypi.org
4 http://www.primesense.com
5 http://wuw.youtube . com/watch?v=6MGJb_Gqaul
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Fig.5: Average per-pixel classification accuracy for each hand part. In the x axis,
for each finger, palm subscripts identify the metacarpophalangeal joints (MCP),
while indexes 1, 2 and 3 identify respectively proximal interphalangeal joints
(PIP), distal interphalangeal joints (DIP) and fingertips. The y axis represent,
in percentage, how many time the hand part is correctly labelled.

presented in Fig. 5, show that our system is usually able to discriminate among
fingers and reach peaks of accuracy in discriminating palm and wrist. Little fin-
gers, as ring and pinky, are obviously more difficult to track, especially for the
self-occlusions that are experimented in many poses, and so the accuracy in their
labelling is lower. Data presented in Fig. 5 represent the average accuracy of our
system with respect to a ground truth set composed by 42 depthmaps, manually
labelled. Hand labelling example is given in Fig. 6.

Average accuracy obtained by of our system in per-pixel classification is
slightly worse than the one achieved in [16], but this is just due to the fact that
we used a much smaller training set, composed of less than 15’000 images, while
in [16] 200’000 images are used (and authors could not use more for memory
constraints).

However, the experiments confirm that the average accuracy reached by our
approach is sufficient to effectively track the hand and discriminate among hand
gestures, even if similar. To this extent, Fig. 7 shows a graph summarizing the
hand gesture recognition accuracy. Such data are computed using one against
everything else cross-correlation validation, a process in which data from one
subject is used for testing and all the others are used for training. This is the
same metric used in [17] and allowed us a comparison between our approach and
the results obtained by Kuznetsova et al. on real data. Error rate that authors
report for multi-layered RF relying on decision trees with depth fixed to 20 do
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(a) RGB image (b) Labeled Hand image

Fig. 6: Hand labelling example. Depthmap corresponding to the RGB image (a)
is processed by the input block: in the labelled image (b), the background is
removed and each identified different sub-part of the hand is coloured with the
corresponding colour from the model.

not go below 49%. Such results are outperformed by our approach, since we
achieve an average error rate of 46% in the same operating conditions.

As shown in Fig. 7, our approach is able to accurately recognize a sign most
of the times. Even if accuracy is practically never over 90% in our experiment,
we notice that a precision of nearly 35% is always guaranteed and it is suffi-
cient to accurately recognize signs. For instance, Fig. 8 shows two example of a
hand labelled by our approach. As it is shown in Fig. 8d, the T letter is easily
discriminated even if average classification accuracy is slightly more than 40%.

4.2 Experimental Method

To test the whole pipeline of the system, comprehensive experiments were per-
formed. In these experiments, subjects, not expert in TSL (blindfolded and with
ears covered with headphones), are required to recognize the signs performed
by the robotic hand, while a proficient in SL performs the signs in front of the
input device in another room of the same building.

Each test subject is visually trained for five minutes on the subset of chosen
signs with the proficient in LIS (the robotic hand is not used in this phase). After
this first phase, the subject is blindfolded and his/her ears are covered; then, the
subject is introduced in the room where there is the robotic hand. Note that the
subject does not see the robot hand when training.

The message is sent to the robotic hand through a net (local network in
the experiments). The results collected so far show that most of the times signs
are correctly sent over the network and successively recognized in few seconds
touching the robotic hand, even by non expert people.
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ABCDEFHIKLMNOPPORSESEETUWWXY

Fig.7: Average percentage classification accuracy for different hand gestures,
the sign is on the z-axes; please note that signs P and S are repeated two times
because LIS admits two ways of performing those signs

In these experiments, we use only a subset of the LIS alphabet, consisting
of characters S, U, V, W, F, because these are the signs recognized with more
accuracy and are also reproducible by the robotic hand, which is a first prototype
with 6 DoF and cannot reproduce the whole possible static signs from LIS.

In particular, the experiments show that the system is able to work without
errors for hours, and pose the basis for a more intensive session with deaf-blind
subjects.

A test application collects data about the experiments. An example of recorded
data is provided in Table 2. The test application randomly produce a List of 40
Signs (LoS) and the signer is asked to perform these signs, one by one, in front
of the acquisition device. Moreover, it records the list of Signs Recognized by
the Input module (SRI).

Recognized signs are transmitted to the controller of the hand by the trans-
mission module. The robotic hand performs the sign and holds it for 5 seconds,
and then it comes back to a rest position (open hand) and waits for the next
sign. The subject has to recognize the sign by touching the robotic hand (us-
ing one or both hands), and then pronouncing the sign he/she understands. An
experimenter records the Signs Performed by the Hand (SPH) and the relative
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(a) Ground truth (b) Labelling (c) Ground truth (d) Labelling

Fig. 8: Classification and ground-truth for two poses of the LIS alphabet. (a,b) V
letter; (c,d) T letter. The classification accuracy is, respectively, 81% and 46%.

Fig.9: Subject (blindfolded and with headphones) interacting with the robotic
hand during the test session (V letter is performed in the picture).

Signs Recognized by the Subject (SRS). Each experiment lasts about 20 minutes
per subject. Fig. 9 shows a subject during a test, while Fig. 10 illustrates the
pipeline of the described experimental apparatus.

The experiments consist in repeating the procedure previously described for
10 subjects, for total amount of 400 signs produced. At the end of the experi-
ments, four list of signs (LoS, SRI, SPH and SRS) are available. Hence, the recorded
lists have been compared among each other and the results summarized in Ta-
ble 3.

LoS VS SRI refers to the percentage of signs correctly recognized by the input
module. This comparison to evaluate the effectiveness of recognition module.
Here errors are due to finger occlusions, that sometimes deceive the recognition
algorithm, but mainly to mistakes of signer. An example of erratic recognition
is shown in column 3 of Table 2.

SRI VS SPH refers to the percentage of signs correctly sent to the hand. This
comparison to evaluate the effectiveness of transmission module and the robotic
hand module. No errors happened in this stage during the experiments.
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Table 2: Example of recorded data during real experiments. Here are reported
the List of Sign (LoS) to be produced, the list of Signs Recognized by the Input
module (SRI), the list of Signs Performed by the Hand (SPH) and the list of Signs
Recognized by the Subject (SRS).

# 12 345678910...
LoSFWVSVFSSV S ...

SRIF WWSVFSSV S ...
SPHF WWSVFSSV S ...
SRSWWWSVFSSV S ...

Randoml, |
v ‘ Input Transmission C::;}_A Robotic Hand
Signs : Module Module Module
!
| Proposed System

LoS SRI SPH SRS

Fig. 10: Pipeline of the experimental apparatus.

SPH VS SRS refers to the percentage of signs correctly recognized by the
subjects. More of the errors in this phase can be ascribed to the subjects’ lack
of experience in Tactile LIS. In particular, the sign W is often confused with the
sign F, since in both cases three fingers are opened.

Finally, LoS VS SRS measures the efficiency of the whole experimental appa-
ratus. Here the percentage of success synthesizes the other percentages.

As shown in Table 3, overall success rate is 91%. Such result proves the
general robustness of our system. In addition, we are confident that success rate
will be higher in communication with real deaf-blind persons, that would surely
make less mistakes in both performing and recognizing signs and letters from
their SL alphabet.

5 Conclusions

This paper presents a system to allow non-invasive remote control of a robotic
hand by using low-cost acquisition devices. The system is able to recognize hu-
man hand poses and can send them over the Internet, in order to control a
robotic hand, that is able to reproduce poses in real time. This system does
not require any tuning phase. Despite further optimizations which are still re-
quired, our approach shows great accuracy in discriminating even similar poses
and achieves real-time performances.
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Table 3: Reliability performances of the proposed system.

LoS VS SRI 95%
SRI VS SPH 100%
SPH VS SRS  96%

LoS VS SRS 91%

Such system can be useful in many different fields, as for example human-
machine interaction, and may easily and intuitively allows interaction with 3D
virtual environments.

The paper presents also an early set of experiments demonstrating the effi-
ciency of the system. The preliminary collected results demonstrate that more
than 90% of times signs are correctly sent over the network and successively
recognized by the test subjects touching the robotic hand. Note that errors in
sign recognition by the subjects are not a validation penalty, since they are not
Tactile LIS experts. The system will be evaluated through future experiments,
when deaf-blind persons will be involved as well. Nevertheless, performed ex-
periments were very useful to preliminarily assess the feeling of the subjects in
touching the haptic interface while performing the sign recognition task.
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