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Abstract The paper addresses and solves the problem of multirobot collaborative local-
ization in highly symmetrical 2D environments, such as the ones encountered in logistic
applications. Because of the environment symmetry, the most common localization algo-
rithms may fail to provide a correct estimate of the position and orientation of the robot, if
its initial position is not known, no specific landmark is introduced, and no absolute infor-
mation (e.g., GPS) is available: the robot can estimate its position with respect to the walls
of the corridor, but it could be critical to determine in which corridor it is actually moving.
The proposed algorithm is based upon a particle filter cooperative Monte Carlo Localization
(MCL) and implements a three-stage procedure for the global localization and the accurate
position tracking of each robot of the team. Online simulations and experimental tests, which
investigate different situations with respect to the number of robots involved and their initial
positions, show how the proposed solution can lead to the global localization of each robot,
with a precision sufficient to be used as starting point for the subsequent robot tracking.

Keywords multi-robot · localization · symmetric environments · logistic areas

1 Introduction

Multirobot collaboration is one of the most challenging and promising research areas in
mobile robotics. A team of robots, suitably coordinated, can be used to execute complex
tasks, as in surveillance, monitoring, and mapping, to cite only a few.

In these tasks the correct and reliable localization with respect to a known map is of cap-
ital importance, and represents one of the most fundamental problems in mobile robotics:
a comprehensive study is reported in [24]. Potentially the multirobot case gives some in-
teresting advantages, since the accuracy of the robots pose estimates can be improved by a
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cooperative localization, even if wireless communication and data sharing problems must be
considered. Extended Kalman Filters (EKF) and Monte Carlo Localization (MCL) methods
are the most common filtering algorithms applied to robot localization. The data association
problem in the EKF approaches can be solved in various ways, for instance by multi modal
distributions that approximate the position probability distribution, sometimes including it-
erations that propagate also an estimate of the posterior marginal densities of the unknown
variances. Another possibility is to use visual feature descriptors (see for instance [7]). In
[13] the global state of the environment is obtained by fusing the environment states of the
vehicles; the poses of the detected vehicles are represented by a single system. The method
proposed in [14] is based on a series of hierarchically distributed EKF filters. The team is
decomposed in several groups, each with a group leader, and for each group an extended
Kalman filter estimates the configurations of all the members. Then one filter is used to esti-
mate the location of the group leaders. In [17] the authors present a study of the localization
performances of heterogeneous robotic teams with arbitrary relative position measurement
graphs. Interlaced Extended Kalman Filter is used in [18]. The authors of [20] propose an al-
gorithm which can estimate both the robot poses and the unknown covariance parameters by
an approximation of the posterior marginal densities of the unknown variances. In [22] the
authors propose a decentralized estimation schema, called collective localization, which is
used to fuse measurements collected from different sensors onboard of the different robots.

The MCL methods approximate the probability density to be estimated using a finite
set of samples. The collaborative approach proposed in [9] uses a sample-based version
of Markov localization. Other examples of collaborative MCL algorithms using different
sensors exist. In [12] information on detected objects is used to improve self localization
and is then propagated to other team members. The approach described in [19] improves
the performance of low-cost sensors by exploiting multirobot communication. The authors
of [21] exploit MCL collaborative localization for exploration tasks. In [10] the authors
use a Fast Conjunctive Resampling Particle Filter (FCR-PF) for multirobot collaborative
localization. In the algorithm proposed in [15] particles are exchanged between robots when
they see each other and then evaluated on the basis of the measurement results of both robots.

Cooperative robust multirobot localization has also been proposed, in which unknown
but bounded error models are employed for the sensor measurements (see e.g., [16], [23]).

Localization includes two distinct sub-problems: position tracking and global localiza-
tion. In the first one, the robot pose is iteratively estimated while the robot moves starting
from an initial condition, known with a given uncertainty, while the second one determines
the absolute robot position with respect to a given environment map; this problem is the
most challenging, since no information of initial pose – or a completely wrong estimation
of the actual pose, as in the so-called kidnapped robot – can be available.

Many of the papers cited above use multirobot and/or mutual localization to improve
the quality of self-localization estimates that single robots could achieve on the basis of
their own sensors only, implicitly assuming that the measurements provided by such sensors
would be suitable to obtain a sufficiently correct, even if not precise, global localization.
Unfortunately, without some external absolute information, a correct global self-localization
could be critical for a single robot when the environment is highly symmetrical.

Highly symmetrical environments are commonly encountered in large logistic spaces,
like the ones considered in this paper, where a team of robots performs surveillance and
monitoring tasks. A logistic space is similar to an indoor or outdoor warehouse, i.e., an area
where logistic or transport companies receive, store and distribute large quantities of goods,
as containers, cars, crates and other similar items. In order to achieve an efficient occupancy
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Fig. 1 The map of the environment.

of the area and facilitate the handling operations, free corridors among the stored goods
often form a regular grid, as in Figure 1.

Some commercial systems are already available for logistic applications, in particular
for warehouse automation but these systems do not exploit multirobot localization. Instead
they rely on ad-hoc markers or perform single-robot SLAM and localization (see e.g., Kiva
Systems [1] and Seegrid [4]).

In a fully symmetrical environment reliable global self-localization of each robot cannot
be performed when its initial position is unknown, no specific landmarks are introduced
to discriminate each corridor, and no absolute information (e.g., from GPS) is available or
exchanged with the other robots. By using only its own sensors (odometry, laser scanner,
sonar, etc.) a robot could estimate its position within the corridors, but may not be able
to determine in which corridor is actually moving. In highly symmetrical environments a
correct global self-localization could be possible only with long convergence times or thanks
to ad-hoc path planning strategies.

This paper presents a solution for the global localization problem in highly symmetrical
environments, along the lines of the cooperative MCL approach outlined in [9] (a detailed
comparison with this approach is developed at the end of Section 2.2). The proposed solution
does not use any absolute sensor data (e.g., GPS), that could be unavailable in some indoor
areas, but relies only on minor asymmetries present in the maps (see for instance the superior
left-hand corner in Figure 1), without using ad-hoc path planning strategies.

The idea is to exploit the Cartesian position measurements (in the global reference
frame) that each robot receives from the other members of the team when it is in their field of
view, to quickly propagate the information about the few asymmetries of the environment.
The proposed algorithm is based on particle filters [24] and includes an original resampling
algorithm (given by a modified version of the classical Kullback-Leibler Divergence solu-
tion), used each time a robot receives measurement informations from another member of
the team.

Simulation and experimental tests investigate different cases involving a variable num-
ber of robots in the team, their initial positions, and some possible critical situations. The
results show how the proposed algorithm, based upon a three-stage localization procedure,
leads to the global localization of each robot, within a precision sufficient to be used as
starting point for the subsequent robot tracking.
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The paper is organized as follows: Section 2 describes the proposed localization algo-
rithm, called 3SMCL, Section 3 describes and reports the different simulation and experi-
mental tests performed to demonstrate the effectiveness of the algorithm, and finally Section
4 draws some conclusions.

2 The Three-State Multirobot Collaborative Localization (3SMCL)

2.1 Preliminaries

The Three-State Multirobot Collaborative Localization algorithm (3SMCL) allows each
member of a group of robots moving in a highly symmetrical area to accurately localize
itself and to correctly track its position over time. The 3SMCL algorithm requires the robots
to be endowed at least with a range sensor and a monocular camera. The camera is used to
detect the positions of other robots when they are in the field of view; the measurement
accuracy may be improved using a laser range finder if available. A binary occupancy grid
map of the environment is assumed to be available.

The algorithm has been conceived as a finite state machine, with three states: 1) GL =
global localization, 2) UN = undecided, and 3) PT = position tracking. We already proposed
in [5] an approach to solve the multirobot localization problem using an algorithm based on
two states only, but applied to a completely symmetric environment, when absolute heading
measurements are only occasionally available.

At the beginning of the execution of the algorithm, each robot is in the GL state, as no
information is available about its initial position, and hence it has to be globally localized
with respect to the map. When the number of feasible hypotheses about its actual position
becomes small (as detailed in the next Subsection), the robot enters the UN state. Finally,
it switches to the PT state, when it is supposed to be correctly localized with a high degree
of confidence. If a sudden increase in the localization error is detected, due for instance to
kidnapping or failures in proprioceptive sensors (e.g., wheel encoders rupture) or changes
in the map, the algorithm may switch again to the UN state and then to the GL state.

Let R = {ri : i = 1, . . . ,NR} be the set of robots deployed in the area; with t we indicate
the time variable that clocks the whole localization algorithm. With di(t) we indicate data
coming from the i-th robot proprioceptive and exteroceptive sensors at time t. In particular
we have that

di(t) =
{

oi(t) if proprioceptive measurement
zi(t) if exteroceptive measurement

The proprioceptive measurement oi(t) is used to perform dead-reckoning, while the extero-
ceptive measurement zi(t) contains the range measurements given by the range sensors.

Each robot is able (a) to measure the positions of the other robots in the field of view
of its vision sensor in its local reference frame, concurrently with the 3SMCL algorithm,
(b) to transform the measurements in a global reference frame common to all robots, and
(c) to send these values to the detected robots via a wireless link. Position hypotheses are
generated only from

Let k denote a time instant at which the position of the i-th robot is detected by a set of
robots Ri(k) ⊆ R, (|Ri(k)| being its cardinality). The robots belonging to Ri(k) send their
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measurements to the i-th robot, which collects them in the following matrix:

hi(k) =

 x̂1
i (k) ŷ1

i (k)
...

x̂|Ri(k)|
i (k) ŷ|Ri(k)|

i (k)

 . (1)

x̂ j
i (k) and ŷ j

i (k), j = 1, . . . , |Ri(k)| are vectors containing the estimates of the position of the
i-th robot expressed in Cartesian global coordinates. The position estimates contained in
the j-th vector are generated starting from the position hyphoteses of the j-th robot which
has detected robot i. These position hypotheses are the result of a Density-Tree clustering
[9] procedure applied to the set of particles. Position estimates are generated only from
position hypotheses whose weight is above a given threshold. The likelihood of the position
hypotheses is not propagated in matrix hi(k) because in highly symmetrical environments a
high weight does not guarantee the correctness of the hypothesis.

The set of all measurements received by the i-th robot up to time k is defined as Hk
i =

{hi(1), . . . ,hi(k)}.

2.2 The algorithm

We now describe the core of the 3SMCL algorithm, which runs onboard each robot.
The algorithm outlined in Figure 2 is basically organized as a Finite State Machine

(FSM) with three states. The first state is the default initial state and it is active when the
robot is in GL state. Then, when a proper accordance function (later defined) is below a
certain threshold, the algorithm enters the UN state. This state indicates that there are two
or more “dominant” position hypotheses, based on the axes of symmetry of the map, but the
algorithm is still not able to definitely choose which hypothesis has the highest likelihood to
be the right one.

When one hypothesis markedly prevails, i.e., when the localization performances are
sufficiently accurate, the algorithm changes its state to PT.
It is important to stress that the the GL state is the only state in which the belief of a robot
(let’s say robot RA) is influenced by the estimates of the other robots detecing RA at a certain
time. This means that the particle set of the RA robot is directly influenced by external mea-
surements only when it is in the GL state. Typically, when a robot is in the GL state, its pose
estimate is highly uncertain, since various position hypotheses are still “alive”. For this rea-
son, if a robot in the GL state receives uncertain position hypotheses from other robots that
are in UN or PT state, its position uncertainty is reduced. Once the robots reach the UN state
(and then the PT state), the localization performances are only monitored, and the belief
of the robots is no more mutually influenced. Ideally, once reached the PT state, the robots
should never switch back to the UN state. However, the algorithm continues to monitor the
localization performances. In case of localization performance degradation, the algorithm
switches again to the UN state and possibly to the GL state.
The algorithm is based on particle filters [24]. It receives as inputs the set of particles χ t−1

at time t−1, the sensors measurements di(t), the set of robots Ri(k) detecting the i-th robot
at time k, the lower and upper bound of the number of particles Nkld employed in the resam-
pling algorithm (Nmin and Nmax respectively), the grid map m of the environment, and Nhyp,
which is the maximum number of particles that can be used to approximate the probability
distribution of the received position hypotheses, as detailed later. The algorithm gives as
output the set of pose hypotheses Φi(t) of the i-th robot and the best one φ best

i .
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Observing the pseudo-code of the algorithm in Figure 2 relative to the GL and UN states,
it can be noticed the typical prediction phase at line 13 and the update phase at lines 15-16.

Require: χt−1, di(t), Ri(k), Hk
i , Nmin , Nmax , Nhyp , m

Ensure: Φi(t), φbest
i (t)

1: if state = ’PT’ then
2: [χt ,µk ,l] = position tracking(di(t), χt−1, hi(k), l)

3: [Φi(t), φbest
i (t)]= DT clustering(χt )

4: if l > np2u then

5: [µk ] = loc perf(φbest
i (t), hi(k))

6: if µk ≥ µp2u then
7: state = ’UN’; l = 0
8: end if
9: end if

10: else
11: initialize χt
12: if di(t) = oi(t) then
13: pi(t) = sample motion model(di(t), pi(t−1))
14: else if di(t) = zi(t) then
15: wi(t) = measurement model(di(t), pi(t), m)
16: χ̄t = χ̄t + 〈pi(t),wi(t)〉
17: if Ri(k) = /0 then
18: χt = KLD 1(χ̄t , Nmin , Nmax )

19: [Φi(t), φbest
i (t)] = DT clustering(χt )

20: else
21: l = l +1
22: if state == ’GL’ then
23: χt = Mutual KLD(χ̄t , Nmin , N′max , Nhyp ,hi(k))

24: [Φi(t), φbest
i (t)] = DT clustering(χt )

25: end if
26: if state = ’UN’ then
27: if l > nu2p then

28: [µk ] = loc perf(φbest
i (t),Hk

i )
29: if µk ≤ µu2p then
30: state = ’PT’; l = 0
31: end if
32: end if
33: if l > nu2g then

34: [µk ] = loc perf(φbest
i (t), Hk

i )
35: if µk ≤ µu2g then
36: state = ’GL’; l = 0
37: end if
38: end if
39: end if
40: if state = ’GL’ then
41: if dist < µg2u then

42: state =′ UN′
43: end if
44: end if
45: end if
46: end if
47: end if

Fig. 2 The 3SMCL algorithm in pseudocode

The prediction phase computes the vector pi(t) containing the predicted pose (in terms of
global coordinates (x, y, θ)) for each particle, while the purpose of the update phase is
twofold. It gives the vector wi(t) containing the importance factors for each particle, and
it verifies whether matrix hi(k) contains position estimates outside the map. If this is the
case, their weight quickly decreases. Then the particles after the update phase are added
to the temporary set χ̄ t . Then, at line 17, the algorithm verifies if it has received a vec-
tor of measurements hi(k) from other robots of the set Ri(k) at time k. If Ri(k) is empty,
a classic Kullback-Leibler Divergence (KLD) resampling occurs (see [24]); Nmin and Nmax
are respectively the lower and upper bound of the number of particles Nkld employed in the
resampling algorithm. If instead Ri(k) is not empty, a modified version of the KLD resam-
pling is implemented (line 23). The idea is to exploit the Cartesian position measurements
(contained in vector hi(k)) that the i-th robot receives from the other robots of Ri(k) to prop-
agate the information about the few asymmetries of the environment. In the preliminary
solution implemented in [6] the proposed policy simply employed all the available particles
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(Nmax−Nkld) to approximate each belief contained in matrix hi(k). In this work we adopt
the Kullback-Leibler Divergence to compute the number of particles needed to approximate
each pose hypothesis contained in matrix hi(k) and we propose an original resampling algo-
rithm called Mutual KLD outlined in Figure 4. The algorithm is described later in Subsection
2.3. After this resampling phase, a classic Density-Tree clustering [9] (lines 3, 19, 24 of Fig-
ure 2) is always performed, providing a set of Nh hypotheses Φi(t) = {φ j

i (t)}, j = 1, . . . ,Nh,
on the pose of the i-th robot, among which the best hypothesis φ best(t) is selected. Each
hypothesis φ

j
i (t) consists of the predicted pose p j

i (t), its covariance matrix Σ
j

i (t), and the
associated weight W j

i (t), representing its confidence level:

φ
j

i (t) = {p j
i (t),Σ

j
i (t),W

j
i (t)}. (2)

The best hypothesis at time t is defined as

φ
best
i (t) = argmax

W j
i

(Φi(t)) = {pbest
i (t),Σ best

i (t),W best
i (t)}. (3)

The center of mass of its own hypotheses is defined as

p̄i(t) =
Nh

∑
j=1

p j
i (t)
Nh

. (4)

The mean distance among its own hypotheses is defined as

dist =
Nh

∑
j=1

√
(x̄i(t)− x j

i (t))2 +(ȳi(t)− y j
i (t))2

Nh
, (5)

Switching rules among the three states are based on the following accordance function:

µk =
k

∑
q=k−n

|Ri(q)|

∑
j=1

√
(x̂ j

i (q)− x̂best
i (t))2 +(ŷ j

i (q)− ŷbest
i (t))2

n|Ri(q)|
, (6)

where n is the length of the sliding window used to compute the average in (6). This quantity
is an average on the distance between the hypotheses and the best position estimate of the
i-th robot, averaged over the last n times the i-th robot has been detected. It must be noted
that both (4) and (6) do not consider the weights of the hypotheses, as the particle filtering
framework would suggest. The reason depends on the particular application field we are
considering, which is localization in highly symmetrical environments. In this situation, it
can frequently happen that a position hypothesis with a high weight is not the correct one.
Therefore, using weights in (4) and (6) may lead to a degradation in performance monitoring.

If the robot is in the UN state and it is deciding whether it can switch to PT, n is set equal
to nu2p. If the robot is in the UN state and it is deciding whether it has to switch back to GL,
n is set equal to nu2g. The variable l is used to count the times the i-th robot is seen by the
other robots in the set Ri(k) at time k, and it is useful to decide when the i-th robot has been
seen nu2p or np2u times, hence when it is appropriate to evaluate the accordance function of
(6).

The inner summation in (6) averages the distances among the elements of hi(k) and the
best position hypotheses of the i-th robot. The outer summation in (6) performs a moving
average of length n on the results of the inner summation. Therefore µk measures the ac-
cordance between the actual belief on the position of the i-th robot and the average of the
beliefs that the other robots have on its position at time k.
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Fig. 3 The states and the thresholds.

When µk is lower than a certain threshold µu2p (empirically determined) the algorithm
switches to PT. This phase is aimed at tracking the position of the robot over time, and it
is implemented using classical KLD resampling (see [24]). µk is computed also during the
position tracking phase: if µk becomes greater than a given threshold µp2u, the algorithm
switches again to UN.

When the robot is in GL, it switches to UN if and only if the distance among the hy-
pothesis defined in (5) is smaller than a certain threshold µg2u (see Figure 2, lines 40-42 and
Figure 3). The values of the various thresholds that are present in the algorithm are empiri-
cally determined, taking into account the environment characteristics, mainly its dimensions
(see 2.4 for a more detailed discussion).

Remark 1 Before proceeding, we want here to point out the main differences between the
proposed approach and other approaches, mainly [9].
The first difference between the method proposed in [9] and our method lies in how two
generic robots (RA and RB) are able to mutually influence their belief. In [9] when one robot
detects another, the sample sets are synchronized implementing a sampling version of the
Multi-Robot Markov localization. In particular (13) of [9] shows the synchronization phase
from a theoretical point of view. Equation (13) is implemented using density trees and a
refined density reflecting both the beliefs of RA and RB is obtained.
In our work robot RA, detecting robot RB, sends to RB a subset of the position hypotheses
it has about robot RB (implemented by a clustered version of the density trees of [9]). Then
robot RB draws randomly on the hypotheses a number of particles that depends on the Mu-
tual KLD resampling criteria detailed in Subsection 2.3.
This idea of mutually influencing the belief of the robot can be found also in another recent
paper [10]. The advantage of our work with respect to [10] is that our Mutual KLD assures
the automatic selection of a number of particles that refine the distribution and guarantees
efficiency.

Another difference between our work and [9] is that we have introduced a method to
evaluate if the team is correctly localized. The method consists of introducing a Finite State
Machine with three states, and a switching mechanism among the states based on the eval-
uation of a proper accordance function. We do not claim here to have a proof about the
convergence of the particle filter to the true hypothesis, but we have experimental validation
about the correct localization of the team when the robots are in the PT state. The reliability
of localization in our PT state is a very important condition from the application point of
view, since once all the robots have reached the PT state, correct localization can be assumed
and generic tasks assigned to the team can be carried out.
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2.3 Mutual KLD resampling

In the solution proposed in this paper we adopt the Kullback-Leibler Divergence to compute
the number of particles needed to approximate each pose hypothesis contained in matrix
hi(k) and we propose an original resampling algorithm called Mutual KLD, which is outlined
in Figure 4. The intuition behind this algorithm is that it allows to refine the probability
distribution on the position of a robot using the estimates of other robots and to determine
the number of particles needed to approximate the distribution according to the KLD. In line

Require: S̄t , Nmin, Nmax, Nhyp,Nkld , Ri(k), ε

Ensure: χ t

1: nhyp = |hi(k)|
2: if Nkld > Nmax−Nhyp then
3: Nkld = Nmax−Nhyp
4: end if
5: if NlimitHyp =

Nmax−Nkld
nhyp

then
6: for i = 1 : nhyp do
7: N i

mkld = 1
2ε

χ2
k−1,1−δ

8: N i
curr = min{N i

mkld ,NlimitHyp}
9: add N i

curr to St
i

10: Nkld = ∑i N i
curr , i = 1, . . . ,nhyp

11: St = ∑i St
i , i = 1, . . . ,nhyp

12: end for
13: end if

Fig. 4 The Mutual KLD resampling

1 the number nhyp of hypotheses received is calculated as the cardinality of the elements
contained in hi(k). Nkld is the number of particles used to approximate the belief without
taking into account the position hypotheses coming from the other robots. This number is
computed in lines 2-3. If this number is greater than Nmax−Nhyp, we reduce it to Nmax−Nhyp,
where Nhyp is the maximum number of particles that can be used in this case to approximate
the probability distribution of the nhyp position hypotheses.
Then, the number of particles Ni

mkld is computed for the i-th hypothesis as

Ni
mkld =

1
2ε

χ
2
k−1,1−δ

(as in (13) in [8]), where χ2
k−1,1−δ

is a chi-square distribution with 1−k degrees of freedom.
This value is the required number of particles to guarantee that with probability 1− δ the
Kullback-Leibler distance between the Maximum Likelihood Estimate (MLE) of the posi-
tion hypothesis and the true distribution is less than ε .
It is not necessary to accurately approximate the probability distribution of the incoming
hypotheses, because they are only used to add coarse information on the position of the i-th
robot. Therefore we can accept an approximation with few particles of the probabiliy distri-
bution of these hypotheses. By increasing or decreasing the value of ε and δ , better or worse
approximations of the distribution of each position hypothesis are set. This has indeed an
impact on the number of particles used to approximate the final belief on the position of the
robots, as it will be discussed in Remark 2 of Subsection 3.4.
Higher values of ε allow to potentially use less than Nmax−Nkld particles to approximate
the belief of the robots, hence the value of ε in the case of our Mutual KLD is higher than
the value adopted in the standard KLD resampling.
The value of ε can indeed be seen as a tunable parameter that changes the importance of the
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position hypotheses contained in hi(k) on the final belief of the i-th robot. We do not focus
here on how to find general methodologies to calculate ε , but we simply set this value to five
times the value of ε in the standard KLD sampling.
In line 8, for each hypothesis we constrain the actual number of particles Ni

curr to be at
most equal to NlimitHyp, which is the maximum number of particles that can be reserved for
each hypothesis. The new Nkld number of particles approximating the belief of the robot
is computed in line 10 of the algorithm in Figure 4 as the sum over i of all the Ni

curr. For
each hypothesis, then the x,y coordinates of the particles are randomly generated according
to a Gaussian distribution with mean equal to the center of the hypothesis considered, and
heading uniformly distributed over the 0−2π space.
The algorithm in Figure 4 can be seen as an application to the multirobot case of the adaptive
resampling proposed in [8], since it adapts the sample set to represent the belief of a robot
using also informations coming from the other robots of the multirobot team.

2.4 Parameters significance and choice guidelines

The proposed algorithm depends on a certain number of parameters, and we intend here to
clarify their meaning and influence, giving also some intuition about possible strategies on
how to set these parameters in different situations. The first parameters to be set are Nmin and
Nmax, which are respectively the minimum and maximum number of particles that can be
used to approximate the belief of the robot. In the case considered in this paper, the number
of particles that approximates the belief of the robot position is adaptive, therefore Nmin and
Nmax are mainly chosen according to considerations related to the computational load.
The meaning of k, ε and δ , the KLD resampling parameters, can be found in [8] and refer-
ences therein.
Nhyp is the maximum number of particles employed to approximate the distribution of the
nhyp position hypotheses of a robot. This exact number of particles is determined by our
Mutual KLD criterion, but it has to be constrained in some way, since the entire particle set
is upper-constrained by Nmax. NlimitHyp is instead the maximum number of particles that can
be employed to approximate each position hypothesis.
The parameters that regulate the switching among the GL, UN and PT states are µg2u, µu2g,
µu2p, µp2u. A robot switches from GL to the UN state when the distance between its position
hypotheses is under the µg2u threshold. If this threshold has a low value (e.g., under 2 m), the
robot will switch to the UN state only when the distance between its position hypotheses is
lower than 2 m. If instead this threshold has a high value (e.g., 10 m), the robot will switch
very fast to the UN state.
In symmetric environments (which are the focus of this work) it happens that multiple posi-
tion hypotheses have similar weight, and in this situation the particle filter may prematurely
converge to one of the symmetric hypotheses, thus leading to failure in the localization pro-
cess. For this reason we have designed the UN state. When the particle filter has converged
to a set of hypotheses whose mean distance is lower than µg2u, the robot enters the UN state.
At this point, to reach the PT state (and hence to be considered as correctly localized), the
robot has to be detected a number of times equal to nu2p, and the value given by the accor-
dance function must be lower than µu2p.
When the localization performances worsen, a similar mechanism allows the robot to switch
back to UN and then to GL. Now the problem is how to choose values for µu2p, nu2p and the
other similar parameters used when localization performances worsen. Let us consider for
instance µu2p. Choosing a low value imposes that a robot, to switch to PT, needs the position
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estimates sent by the other robots to be very close to the actual postion estimate of the robot
receiving these estimates. In an application, this parameter should be imposed equal to µg2u,
and then finely tuned, taking into account the accuracy of the sensors used, and observing
the performances in simulation. The other parameter that influences the switching time be-
tween UN and PT is nu2p. High values of this parameter extend the time needed for robot
switching to PT, but at the same time they reduce the possibility to have switching to PT
when the robot is not correctly localized yet. Therefore the tuning procedure of nu2p, nu2g,
and np2u really depends on the considered environment.

3 Simulation and experimental tests

In this Section we validate the effectiveness of the proposed 3SMCL algorithm, carrying
out a series of online localization tests in simulation.

Mobilesim [2] simulation software was used to perform simulations of the robots and
their environment. It is based on the Stage library [11], and it simulates MobileRobots plat-
forms. We performed experiments with a team of simulated Pioneer P3DX robots, endowed
with sonar sensors and laser range finders. The data coming from sonar is employed in the
localization algorithm, while the laser range finder is used in conjunction with the camera
to determine the position of the detected robots.

The simulator embeds a model of the behavior of sonar and laser range finders, provides
robot odometry pose estimation with cumulative error, and allows multiple robots simula-
tion.
The simulator has also been improved by adding a simple simulated vision sensor and the
support for communication among robots.
Three environments were considered. The first environment, used in the first three tests,
simulates a large logistic area (see Figure 1), where occupied black areas may be thought
as containers or similar bulky items stored by transport societies before distribution. The
dimension of the whole environment is 80× 65 m, the black areas are 20× 10 m and the
corridors are 5 m wide.
In this case, the high symmetry of the environment makes the global localization a diffi-
cult task, which the proposed 3SMCL algorithm successfully accomplishes, as the tests will
show in different situations.
The second environment, used in test 4, is the hallway considered in [9] and reported here in
Figure 5. We ran the 3SMCL algorithm in this environment in order to test it in a situation
similar to the one proposed in [9] in test 4.
The third environment, used in test 5, is a more realistic scenario, which presents a greater
number of asymmetries, given by the interior of the Intel Research Lab in Seattle (Figure
11) available in the Radish dataset [3]. In all the simulation experiments the robots move
randomly, because we are not interested here in evaluating active localization strategies.
Moreover, since the localization errors shown in the following subsections are averaged
over multiple runs, it makes sense comparing the localization errors, without knowing the
exact paths and how often the robots observe each other.

3.1 Simulation test 1

In this test we analyze the robustness of the 3SMCL algorithm with respect to random
variations in the initial position of the robots. We define the localization error of the i-
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Fig. 5 The hallway.

th robot as the distance between the ground-truth Cartesian position (xgt
i (t),y

gt
i (t)) and its

Cartesian position estimation given by the best hypothesis, i.e., as

eρ

i (t) =

√
(xgt

i (t)− x̂best
i (t))2 +(ygt

i (t)− ŷbest
i (t))2. (7)

The pose information of the best hypothesis is given by pbest
i (t) and can be extracted by

φ best
i (t), defined in (3).

We randomly initialize the pose of NR = 6 robots in free areas of the map, let them move
according to a simple obstacle avoidance behavior, and monitor the localization error eρ

i (t)
for i = 1, . . . ,NR up to t = 2500 s. We are interested in evaluating the average localization
error among repetitions of the experiments, hence we repeat them several times, each time
setting randomly the initial position of the robots, and we define ēr

i (t) as the average of eρ

i (t)
for the i-th robot over ne realizations. The results are shown in Figure 6 for ne = 100. The
localization error eρ

i (t), i = 1, . . . ,NR decreases approximately linearly for all the robots, and
the mean error among all the 6 robots (dashed line in Figure 6) reaches a final value below
0.4 m. The 3SMCL algorithm is thus not susceptible to variations in the initial positions
of the robots. This fact has an important impact on the application side, in particular when
considering robotic applications in logistic spaces, since the algorithm does not require any
particular initial formation of the robots, avoiding any human intervention to initially place
the robots in a specific area of interest.

We now give the definition of the first and the last switching time from one state to an-
other during the experiments. The first switching time is the instant at which a robot changes
its state for the first time, while the last switching time is the instant at which a robot changes
its state, definitely remaining in the final state. In Table 1 and Table 2 we show the compari-
son between the first switching time and the last switching time between the UN and the PT
states and between the GL and UN states. Table 1 refers to the first switching time, while Ta-
ble 2 refers to the last switching time. The first row of each table is relative to the switching
from UN to PT, while the second row is relative to the switching from GL to UN. Observ-
ing the average of respectively the first and the last switching time between the GL and the
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Fig. 6 Simulation test 1: average localization errors.

Table 1 First switching time (s)

Min Mean Max
UN→ PT 560 805 1268
GL→UN 26 65 137

Table 2 Last switching time (s)

Min Mean Max
UN→ PT 560 923 1325
GL→UN 203 504 774

UN states, we notice a great difference, since the first switching time is 65 s while the last
switching time is 504 s. This behavior is particularly positive, since robots may switch to the
UN state many times and in different moments during the localization process, thus avoiding
false positive that may compromise the correct localization of the whole team. Observing
again the average, it can be noticed that the last switching time between the UN and the PT
states occurs only two minutes after the first switching time. This means that the algorithm
does not bounce for a long time between the UN and the PT states.

3.2 Simulation test 2

This test has been designed to understand how the localization performance of the 3SMCL
algorithm is affected by the number of robots in the team, in terms of Cartesian position
error.
We define the average position error among the NR robots of the team over the ne = 100
realizations of the experiments as:

Er
NR
(t) =

1
r

r

∑
j=1

NR

∑
i=1

eρ

i (t)
NR

(8)
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where eρ

i (t) is the localization error defined in (7). The results of the simulations for NR =
1,3,6,9 are reported in Figure 7 and in Table 3.
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Fig. 7 Simulation test 2: average localization errors.

Table 3 Correct Localization Percentage

# of robots Correct Localization Percentage
1 78%
3 98%

6,9 100%

It can be clearly seen that one robot is not sufficient to resolve the ambiguity in local-
ization, and that also three robots are not enough to assure reliable localization, since robots
are able to localize themselves correctly only the 98% of the trials. As soon as 6 robots are
employed, the localization error goes below 2.5 m after nearly 1000 s, and all the trials are
successful; the results with nine robots are comparable with those obtained with six robots.
Path planning algorithms become more effective for the robots relying only on their posi-
tion estimations, thus allowing robots to accomplish in a more reliable way the assigned task
(e.g., handling hazardous events collaboratively). Therefore the obtained results are partic-
ularly relevant in practical applications. Of course, the exact number of robots that ensure
correct localization of all the members of the team depends on the size of the area where the
robots move. Future investigations will be devoted to study the performance of the proposed
algorithm with respect to variations of the ratio between the number of robots and the area
to be covered by the robot team.
Table 4 finally shows the average first and last switching times from the UN to the PT states
considering 3, 6 and 9 robots. The switching times dramatically decrease passing from three
robots to six and remain nearly the same when passing from six to nine robots. The perfor-
mance of the 3SMCL algorithm in terms of switching time improves increasing the number
of robots of the team, since there is an evident increase in the speed with which the robots
reach the PT state.
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Table 4 Switching times for 3,6 and 9 robots (s)

First Last
3 robots 1235 1296
6 robots 770 860
9 robots 700 902

3.3 Simulation test 3

This test is aimed at demonstrating that, once all the robots are in the PT state, the algorithm
is robust even with respect to partial variations of the map. To show this robustness, we have
set up a case study where NR = 6 robots are deployed in the same logistic area of the tests
1 and 2 (Figure 1). After all the robots have reached the PT state, a fork lift is supposed to
enter the logistic area in order to remove and add pallets. The fork lift moves ideally at a
constant speed of 1 m/s, and removes or adds randomly a pallet in the map, employing 3 sec-
onds to perform these operations. Tests have been performed with a decreasing occupancy
percentage, starting from 90% of occupancy in steady state condition, up to 50% occupancy
with step of 10%. It is important to say that the information about the map variations are
not communicated to the robots, therefore the challenge here for the 3SMCL algorithm is
to maintain the PT condition and to keep the localization error low for all the robots. Figure
8 shows the localization error eρ

i (t) for i = 1, . . . ,6, considering only one realization of the
experiment. The first plot shows the localization error reduction when the robots, in each
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Fig. 8 Simulation test 3: case study with variations in the map.

test, reach the PT condition. On average after approximately 700 s all the robots in each test
are in PT, and the algorithm that simulates the intervention of a fork lift begins to modify
the map.
Observing the second plot, which is simply a zoom of the first one, we see that the error
increases, but only from 0.4 m to 0.6 m. Therefore the PT state of the proposed algorithm
can be considered stable with respect to random variations in the map.
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3.4 Simulation test 4

We have applied the 3SMCL algorithm in localization experiments with the map shown in
[9] and reported in Figure 5.
We performed three experiments: two of them with 3 and 6 robots respectively, allowing
exchange of mutual information (so running the 3SMCL algorithm) and the third one with
6 robots, with no information exchange. In this case the algorithm reduces to a classical
MCL algorithm with KLD resampling.

The number of repetitions is 50, as in Test 2. Figure 9 shows the average position error
Er

NR
(t) for NR = 3, with mutual information exchange allowed, and for NR = 6, with and

without mutual information allowed. The position error obtained with three robots is com-
parable with that with six robots and local communication allowed, and it is significantly
reduced with respect to the experiment with six robots and communication not allowed.
These results are comparable with those obtained in [9], where at 600 s, in absence of mu-
tual exchange of information a final error lower than 4 m was achieved, while in our case
it is less than 3 m. Considering instead the cases with mutual exchange of information, the
final error is decreased to less than 1.2 m.
It must be noted that in both cases ultrasound sensors were used, but the results reported in
[9] are relative to eight robots and averaged over 8 experiments only.

The proposed algorithm shows only a slight improvement in the localization time with
respect to that in [9]. From our point of view the main improvement given by our work
is relative to the possibility of checking if robots are well-localized, i.e., if they all have
reached the PT state. In particular in all these experiments all robots reach the PT state;
the switching times are reported in Table 5. We notice again that the switching times on
average decrease significantly passing from 3 robots to 6 robots. Considering in particular
the experiment with 6 robots, the last switching time is approximately 500 s on average and
at that time the average position error is below 1.5 m. A remarkable result is that even if the
number of robots increases, they do not become overconfident about their belief. PT state is
always reached when all the robots are correctly localized.
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Fig. 9 Simulation test 4: average localization errors.

Remark 2 In Subsection 2.3 we claimed that the number of particles employed to approx-
imate the probability distribution of the position hypotheses is generally less than Nmax−
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Table 5 Simulation test 4: switching times (s)

First Last
3 robots 683 706
6 robots 454 522

Nkld . Figure 10 shows the results of the generic i-th robot in a single experiment, confirming
such a statement.
The blue plot is the number of particles resampled at time t, the red plot is the maximum
number of particles that could be used to approximate each element of hi(k) at each time k

and the black plot is Ni
mkld

nhyp
(see the algorithm in Figure 4), i.e., the actual number of particles

that the Mutual KLD algorithm uses to approximate each position hypothesis.
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Fig. 10 Comparison among the number of particles employed to approximate the position hypotheses

3.5 Simulation test 5

We also tested the proposed algorithm in a realistic scenario, as shown in Figure 11. We
chose the map of the interior of the Intel Research Lab in Seattle, available in the Radish
dataset [3]. We define the average position error among the NR = 3 robots of the team over
the r = 10 realizations of the experiments as in (8). The results of the simulations are re-
ported in Figure 12.

Results show that after approximately 230 seconds all the team members are correctly
localized, even if a team of only three robots is used. This is due to the fact that the high
number of asymmetries in this scenario, not relative to a logistic environment, is sufficient
for the robots to correctly localize themselves even without exploiting multirobot informa-
tion exchange.
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Fig. 11 The Intel Research Lab.
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Fig. 12 Simulation test 5: average localization error.

3.6 Experimental tests

We also tested the proposed algorithm in the real world using real robotic platforms. The
environment is 20× 12 m and is characterized by only little asymmetries. We used a team of
three Pioneer P3DX endowed with SICK LMS200 laser rangefinders and low cost monoc-
ular vision sensors. Each robot of the team is able to identify the others when they are in a
certain field of view, using barcodes as identificators and a proper barcode detection algo-
rithm. The detection is performed in two steps: we use the barcode detection algorithm to
estimate the bearing of the detected robots, then we use the laser scanner to get an accurate
measure of their distance. Figure 13 shows the robots team, while Figure 14 reports a grid
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representation of the site where the experiments have been carried out, showing in particular
the minor differences (asymmetries) that distinguish the sides of the environment. Odometry
is used in the prediction phase of the filter, while range measurements obtained from laser
rangefinders are used in the update phase. The ground truth to evaluate the localization error
has been generated offline using a grid-based SLAM algorithm based on PMAP. This algo-
rithm also outputs laser-corrected odometry, which is accurate enough to be used as ground
truth for the trajectory of the robot. In both the experiments we use a maximum particle size
of 10000 for each robot.

The first test (A) has been performed using only two robots, to show that a well localized
robot can speed up the localization of the other that is still uncertain about its position. A
robot is positioned near the main asymmetry of the environment (R1 in Figure 14), while
the other one (R2) is positioned in a place where there are no discriminant features that can
ensure fast localization (see the same Figure). The initial robot headings are indicated by the
arrows.
The result of the test is reported in Figure 15, where the red plot is relative to robot R1 and
the blue plot to robot R2. The sudden decrease in the localization error for robot R2 at

Fig. 13 The team of Pioneer P3DX robots.

Fig. 14 The map of the site where the localization experiments have been carried out.

116 s corresponds to the moment at which the robots detect each other and their beliefs are
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Fig. 15 Experimental test A: localization errors

mutually influenced. The overall result is that the well localized robot (R1) speeds up the
localization of the other robot (R2). This simple example demonstrates that the mutual ex-
change of position information among robots using the proposed algorithm can significantly
speed up the localization process in a real experiment.

The second test (B) is a classical kidnapping test. The two robots are randomly placed
in the environment and, as shown in Figure 16, one robot (blue plot) is kidnapped approx-
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Fig. 16 Experimental test B: localization errors

imately at 500 s, and after 150 s is localized again by the other. Differently from test (A),
which only demonstrates that localization can be speed up using the 3SMCL algorithm,
here we notice that the belief of a not well localized robot is influenced by the belief of a
correctly localized one.

In the final test (C), we performed r = 5 mutual localization experiments using NR = 3
robots randomly placed in the environment. Figure 17 shows the behavior of the average
localization error, defined as:

E j
NR
(t) =

NR

∑
i=1

eρ

i (t)
NR

j = 1, . . . ,r. (9)
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In this experiment we observed that the first and last switching times were the same, so the
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Fig. 17 Experimental test C: average localization errors

robots did not switch back from the PT state to the UN state. On average these switching
times are around 350 s.

We also monitored the computational load of the algorithm running on each robot. The
algorithm runs on an Intel Atom 1.6 Ghz with 2 GB of RAM. The CPU usage remains below
30% during global localization and falls below 10% during position tracking. The memory
usage is about 30 Mb during the whole time.

4 Conclusions

The paper shows how the problem of correct localization of a team of robots can be suc-
cessfully solved by the proposed 3SMCL algorithm in highly symmetrical environments.
Thanks to the cooperative action of all the robots of the team, the knowledge about the
small asymmetries of the environment is quickly spread among the robots, since they can
communicate their positions when they are in the field of view, allowing to remove the am-
biguity on localization. Moreover the approach allows to avoid practical, ad-hoc solutions
(e.g. the use of coded landmarks) to distinguish different regions of the area. The proposed
solution can then be usefully adopted in practical applications, where a team of vehicles
must autonomously move in an area characterized by a regular grid of corridors or streets.
The robustness of the 3SMCL approach with respect to the initial position of the robots is an
important advantage in practice, since the initial team formation can be completely arbitrary.
Moreover, the automatic switch from the PT state to the UN state prevents the occurrence of
macroscopical errors, due to temporary sensor failures or robot kidnapping. Experimental
results in simulated and real symmetrical environments are reported in order to validate the
proposed multirobot localization solution. It must be noted that the correct localization of
the team is achieved if at least some of the robots detect an asymmetry before all the team
is localized. Although it is difficult to estimate the number of robots which have to see an
asymmetry, our simulation tests show that with a sufficient number of robots the probability
of failure is very low. Future work will be devoted to the study of suitable active localization
strategies and to an in-deep analysis of the propagation of measurement errors in the algo-
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rithm. Finally an extensive study should be conducted on the effects of the symmetry of the
map on the optimal number of robots and on localization performances.
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