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Abstract Mobile robots can be employed in the logis-
tic field to efficiently perform common tasks, like build-

ing and updating maps of indoor and outdoor logistic

spaces, locating specific goods on the map, tracing the

product flow in the area, while preserving situational

awareness and safety of the environment. This paper re-
ports and discusses the main results of the MACP4Log

(Mobile Autonomous and Cooperating robotic Platforms

for supervision and monitoring of large LOGistic sur-

faces) research project, aimed at the study and devel-
opment of a set of algorithms and services, enabling au-

tonomous navigation of a team of mobile robots in large

logistic spaces, and exploiting cooperation, through com-

munication with a supervisor and among the robotic

platforms. Although the main services required for the
robots coincide with the most common issues of mo-

bile robotics (i.e., localization, mapping, SLAM and ex-

ploration), the particular characteristics of the logistic

spaces introduce specific problems (e.g., related to a
high symmetry of the environment and/or to its vari-

ability), which must be properly taken into account.

The paper discusses in detail such problems, summa-

rizing the main results achieved both from the method-

ological and the experimental standpoint, and is com-
pleted by the description of the general functional ar-

chitecture of the whole system, including navigation,

logistic, and monitoring services.

Keywords Cooperative mobile robots · Logistic
spaces · Mapping · Localization · Active SLAM and

exploration

1 Introduction

The most recent years have witnessed a growing pres-

ence of robots and automated systems in the logistic

field [1] - [6]. Interesting examples are given by the
system for automated movement of shipping contain-

ers implemented in the Port of Brisbane (Australia),

constituted by 18 autonomous straddle carriers (Au-

toStrad) [2], and by the Kiva Mobile Fulfillment System
[63], which represents a more flexible, alternative solu-

tion for material handling than the classical Automated

Storage and Retrieval Systems (ASRS) [20].

In indoor environments, the most common applica-

tions are related to pallet handling, and can make use

of different kinds of Automated Guided Vehicles (AGV)
[21]. The crucial point is constituted by the actual au-

tonomy of such vehicles [22], and by the conditions in

which they can effectively operate. In widespread com-

mercial systems, independently of the navigation sys-

tem used, predefined transport routes are generally fol-
lowed and/or the presence of suitable landmarks is ex-

pected in the logistic area [64]. In both cases the envi-

ronment is totally or at least partially structured, and

preliminary operations must be carried out in the area,
to create proper walkways, signs and lines on the floor

(as path to be followed), and/or to locate reflectors

(targets), strategically mounted on available landmarks

(like racking and walls). Both solutions have some draw-

backs. In the first case, epoxy type coating and sealers
are generally used to create the lines: when their visibil-

ity becomes too poor (sometimes after only few months)

and/or each time new lines must be added, parts of the

warehouse could be out of action for some hours (or
even up to a couple of days, depending on the used

materials and to the dimensions of the involved area).

Moreover, good illumination conditions are fundamen-
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tal to avoid failures in the system. The possibility to

use computer vision to let an AGV operate without a

supporting structure in a warehouse has been also in-

vestigated [5]. In the second case, the use of targets,

which must be made of high visibility reflective tape on
ad hoc supports, can guarantee a proper localization of

a vehicle only if at least three targets are detected at

any time during travel, if the AGV works in full au-

tonomy. Liu et al. [23] recently surveyed the most com-
mon automated guided methods. The presence of more

AGVs in the area is allowed (path planning strategies

and obstacle avoidance procedures prevent possible col-

lisions), but they do not generally act as an autonomous

coordinated team: their correct operativity is guaran-
teed through severe scheduling and routing procedures

[24]. Only recently the possibility of using a swarm of

small AGVs has been investigated [25] using a wireless

network for their correct localization.

Significant improvements could be achieved on the

one hand making the navigation system more robust

with respect to changes in the routing grid [1], on the

other hand enhancing its autonomy from the structural

(or ad hoc created) characteristics of the environment.
The use of a multi-robot cooperative system, composed

of autonomous mobile robots, not requiring the pres-

ence of predefined landmarks or signed paths, seems to

be the solution for more efficient applications in the
logistic field. Multi-robot solutions give the possibil-

ity of performing complex or distributed tasks and in-

creasing robustness thanks to the physical and architec-

tural redundancy. Navigation, and the main functions

it requires (like localization and mapping), can be per-
formed effectively also in an initially unknown and po-

tentially unstructured environment, thanks to the pos-

sibility to propagate the information acquired by each

robot to all the team by means of a proper communi-
cation network. Moreover, the coordinated motion of

all the team allows to explore and monitor the status

of large areas in a shorter time. Some preliminary re-

sults have been already obtained by researchers in the

logistics field, but only in limited applications or in sim-
ulation tests [4], [6].

The research project MACP4Log - Mobile Auton-

omous and Cooperating robotic Platforms for supervi-

sion and monitoring of large LOGistic surfaces [59] was
aimed at the study and development of a set of algo-

rithms and services, enabling autonomous navigation

of a team of mobile robots in large logistic spaces, and

exploiting cooperation, through communication with a

supervisor and among the robotic platforms.

The main services to be performed by the robot

team address the principal issues of potential logistic

users and can be grouped into (i) proper logistic services

and (ii) monitoring services. The first ones are based

on the possibility of locating specific items on a pre-

determined map of the logistic space, such as contain-

ers, cars, etc., that can be marked by proper tags (e.g. li-

cense plates, bar codes, RFID) or unmarked, and should
be distinguished by color, shape and/or other physical

characteristics. The monitoring services instead are re-

ferred to general surveillance operations, such as the

detection of possible intruders, and processing of het-
erogeneous data, like video stream from cameras, data

about positioning, logs, alarms, etc.

In order to successfully accomplish such operational

(logistic and monitoring) services, each mobile robot

must be able to autonomously navigate, i.e., it must
be able to: (i) build and update a map of the logistic

space, (ii) self-locate within the given/constructed map,

mainly by means of on-board sensors and cameras, (iii)

travel to arbitrary places in the environment, avoiding
static or moving obstacles, to perform its specific task,

according to a general, efficient task allocation proce-

dure among all the robot agents.

The overall goal was to develop a multi-robot sys-

tem characterized by a high flexibility, not based on
an expensive infrastructure, able to operate in an en-

vironment that can be initially not known and poten-

tially unstructured, exploiting as much as possible the

robot team coordination. Substantially flat indoor (or
outdoor) spaces were considered, without using in any

case GPS-based location sensors, while a wireless com-

munication architecture was assumed available.

The particular characteristics of the logistic spaces

and the aims of the project introduce specific problems
that must be tackled in order to assure safe and reliable

autonomous navigation:

– due to the high symmetry of the logistic areas (since

the stored goods are often organized in regular grids),

localization can become a difficult task without an
absolute reference like GPS [26]: in absence of spe-

cific ad hoc landmarks, similar corridors between the

goods can result undistinguishable, preventing the

correct localization of each robot;
– since the environment in which the robot team has

to operate can be initially not known and poten-

tially unstructured, SLAM must be performed in a

cooperative and efficient way, even if the initial po-

sition of the robots is not known or predefined, and
the robots can communicate only within a limited

range;

– since the dimensions of the logistic environment may

be very large, during the SLAM phase it is funda-
mental to apply active strategies for trading-off be-

tween the contrasting tasks of exploring new parts

of the unknown scenario and satisfying given con-
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straints on the admissible uncertainty in the map

estimation process, i.e., the so-called problem of ac-

tive SLAM and exploration must be tackled;

– service robotic applications in logistic areas have to

deal with intrinsically dynamic environments: since
the goods to be tracked can be removed and sub-

stituted by other items many times during the day,

the map must be periodically updated, including the

detected variations, to continue to properly localize
the robots without going back to a SLAM phase, as

if the environment were completely different.

This paper reports and discusses the main achieved re-
sults of the research activity, both from the method-

ological and the experimental point of view.

The adopted robotic platforms for the experimen-
tal tests are Pioneer P3-DX mobile robots (the team is

composed by three rovers, distinguishable by means of a

bar code, as in Figure 1), equipped with proximity sen-

sors, given by the embedded sonar ring and by a laser
range finder SICK LMS200; a vision sensor (a pan-tilt

or an omnivision camera, and/or a Kinect); broadband

wireless transmitter and receiver, and an onboard PC.

It is worth noticing that the robots P3-DX can be un-

suitable for some industrial environments, where more
robust platforms should be adopted; in this work they

are used as test prototype to evaluate the effectiveness

of the implemented algorithms and services.

Fig. 1 The robot team.

All the proposed solutions and approaches for the

analyzed problems have been intensively tested by sim-

ulation and experimental tests. In particular:

– simulation tests have been performed in indoor en-

vironments, including the most critical characteris-

tics of a logistic area (like a high symmetry) and/or
in realistic scenarios, whose maps are well-known to

the robotic community (for sake of repeatability and

comparison);

– experimental tests have been carried out in indoor

logistic-like environments, specifically reconstructed

into rooms, labs and corridors of Politecnico di To-

rino or into larger spaces like a gym;

– indoor and outdoor tests have been performed in
proper logistic scenarios (Figure 2), in the ware-

house of Prodit s.r.l. in Santena (Torino, Italy) [65]

and in the car deck of the Ignazio Messina & C.

S.p.A. company in Genoa (Italy) [66], respectively.

Fig. 2 Experiments in a logistic warehouse.

The results of the simulation and experimental tests

are reported and discussed in detail in previous papers

[18], [19], [29]-[31], [36]-[38], [45]-[48]. Here, summaries

of some of the main results can be found at the end of

each section or subsection of the paper dealing with the
specific topic (e.g., mapping, localization, etc.) consid-

ered in the test. Several photos and videos are avail-

able in the “Media” section of the project website [59].

Citations of specific videos of interest, relative to the
different topics, will be given in the next sections.

The paper is organized as follows: Section 2 sketches

the functional architecture of the whole system; Sec-

tion 3 illustrates the approaches proposed to guarantee

the main robots services required to accomplish vari-
ous tasks, i.e., mapping, localization, path planning and

task allocation; Section 4 describes the main method-

ologies proposed for the management of a logistic space.

Section 5 draws some final conclusions.

2 System architecture

In the proposed functional architecture of the whole

system (sketched in Figure 3), a Graphical User Inter-

face (GUI) provides a user friendly way for a human op-

erator to communicate with the robot team. The human
operator can get through the GUI information about

the status of the team of robots (e.g., the position of

each robot, what type of task it is performing, etc.), and
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send to the team requests to accomplish one or more

tasks, along with their associated priorities.

Fig. 3 The functional architecture of the system.

The GUI is bidirectionally connected with the com-
munication layer, that manages and distributes mes-

sages among the robots, and allows the whole team to

perform coordinated tasks. The blocks “ROBOT 1”,

“ROBOT 2” up to “ROBOT N” embody the functional
architecture from the point of view of the single robot,

and the content of each block is sketched in Figure 4.

At the top level of the functional architecture for

each generic robot, the Robotic Agent block gathers

the information coming from all the services provided
by the robot, such as navigation and operational ser-

vices, and broadcasts them towards the GUI.

The Navigation Services block guarantees the coordina-

tion and information sharing between the Localization,
Map Building and Updating, and Path Planning and

Task Allocation services. The Map Building and Up-

dating Service provides active SLAM and exploration

(mainly when building the first map of the environ-

ment) and map updating during the operativity of the
logistic site. The Localization Service provides the cor-

rect localization of each robot thanks to a cooperative

action with the other teammates, and through a WiFi

communication infrastructure. High level tasks are al-
located by the robotic agent sending the relative infor-

mation to the Path Planning service, that builds local

and global plans for the robot team.

The Operational Services include Logistic Services,

such as physical tracking of goods and warehousing of
their related information (e.g., position in the map, type

of the good, etc.) as well as Monitoring services, such

as detection of intruders, visual inspection of the status

of the logistic site and video streaming of particular
situations of interest.

Sensors onboard the robot and/or placed in the en-

vironment provide a data flow to Localization and Map

Building and Updating Services, as well as to the oper-

ational services blocks.

The system described in this work has beed devel-

oped in C++ under Linux using the ARIA library [69].

For image capture and processing the OpenCV library
[70] has been used. The robots are connected to a mo-

bile ad-hoc network and messages are sent and received

using multicast over TCP/IP. In order to optimize rout-

ing we used an implementation of the Optimized Link
State Routing Protocol (OLSR) [28]. The whole sys-

tem is able to run in near real-time on standard PCs,

with the robots moving at speeds up to 1 m/s. The

source code for the algorithms which are not included

in non-disclosure agreements with partners will be soon
released as ROS (Robot Operating System [67]) nodes.

Fig. 4 The functional architecture of the single robot.

3 Navigation services supporting robot

operation

After the team of robots is deployed in the logistic
space, it is required to perform tasks in an unknown

and potentially unstructured environment. It is possi-

ble to identify three main services which are necessary
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for robotic navigation: (i) to build and to mantain a rep-

resentation of the surrounding environment (mapping);

(ii) to estimate the robot position with respect to the

environment map (localization); (iii) to plan a strategy

to reach a predefined goal and to efficiently allocate
the various sub-tasks among the members of the robot

team (path planning and task allocation). Sections 3.1-

3.3 discuss the aforementioned aspects, focusing on the

solutions developed to tackle the particular character-
istics of the logistic spaces, discussed in Section 1.

3.1 Map building: multi-robot SLAM and solutions for

active SLAM and exploration

Before starting to perform any task, the robot team is

required to build a map of the logistic space in which it
operates. The importance of environment modeling is

threefold: the map of the area is necessary to plan effec-

tive motion strategies; it can enhance situation aware-

ness to the human operator who is going to monitor
the logistic space via human machine interface (HMI);

moreover it can be an intuitive tool for the operator

to issue commands to the robots (reach target on the

map, check the presence of a given good, detect in-

trusion in a specified area, etc.). The problem of map
estimation without exact knowledge of robot position

has been treated extensively in robotics, and the cor-

responding framework is usually referred to as Simul-

taneous Localization and Mapping (SLAM). If the lo-
gistic space is very large (as it often happens), in or-

der to efficiently build the entire map in a short time

it is fundamental (i) to take advantage of the coop-

erative action of the robot team and (ii) to make use

of active SLAM and exploration approaches, i.e., plan-
ning robot motion in order to maximize the explored

areas and at the same time minimize the uncertainty

in SLAM. Exploration is clearly accomplished by visit-

ing unknown places, whereas uncertainty reduction re-
quires the robot to perform loop closing actions, i.e., to

come back to already visited areas. The main results

achieved for multi-robot SLAM and active SLAM and

exploration are summarized in the two following sub-

sections.

3.1.1 Rao-Blackwellized Particle Filters (RBPF) Multi

Robot SLAM

In logistic applications it is fundamental that SLAM is

performed in cooperative and efficient way, even if the
area is quite large, the robots are initially deployed in

random, unknown positions, and they can communicate

only within a limited range.

In previous papers [30],[31] we proposed an applica-

tion of Rao-Blackwellized Particle Filters (RBPF) for

the purpose of cooperatively estimating SLAM poste-

rior. There is a large literature in the field of multirobot

SLAM, which ranges from the application of Extended
Kalman Filter (EKF) [55] to Sparse Extended Infor-

mation Filters [56], manifold representations [57], and

RBPF [52]-[54], which is probably the most used ap-

proach to SLAM when the environment is described by
means of a grid map. A deep discussion about the dif-

ferent SLAM approaches, referred in particular to the

multi-robot case, is available in previous papers [30],

[31]. Our contribution to the field consists in relaxing

strict assumptions that characterize related work. We
consider the realistic setting in which the relative ini-

tial positions of the robots are unknown and robots

can communicate only within a limited communication

range. In particular, they are required to exchange a
small amount of information only when a rendezvous

occurs and to measure their relative poses during the

meeting. Before and after each rendezvous the robots of

the team perform estimation using RBPF-SLAM [53],

[54]. When a rendezvous occurs, the information is ex-
changed and efficiently fused, according to the following

main steps of the proposed approach:

– Data exchange: the two robots, namely i and j,

exchange the data acquired since the last meeting (or

since the beginning if it is the first meeting between

the two robots) to the rendezvous instant; each robot

communicates only the odometric data and the corre-
sponding laser scanner measurements;

– Reference frame transformation: from the infor-

mation received by the teammate, and using relative
pose measurements, each robot suitably roto-translates

the data received in its own reference frame;

– Estimation on virtual data: once the data are roto-
translated, they are used to estimate SLAM posterior

as they were due to laser and odometric measurements

acquired by the robot itself. RBPF estimate the poste-

rior from received data, using suitable process models
with the corresponding uncertainties.

Finally, after filtering of received data is complete,

the particles within the filter restart from their poses
before the meeting, and continue the estimation pro-

cess, according to grid-based RBPF-SLAM. Details can

be found in a previous paper [31].

The described procedure can be easily generalized

to an arbitrary number of meetings. After the first ren-

dezvous each new meeting with a previously met robot

corresponds to a loop closing event, adding constraints
that are introduced in the filter through a resampling

phase, which selects the trajectories that best describe

all the acquired information. Moreover, including vir-



6

tual data from other robots, loop closure can occur also

if the robot revisits places traveled by the met team-

mates. In the k-th rendezvous, each robot does not

transfer the entire data set, but only the piece of in-

formation from the last meeting to the current time
stamp, not only to limit the amount of exchanged data,

but also to preserve filter consistency.

Several simulation and experimental tests have been

performed, confirming the effectiveness of the approach.

For example, Figure 5 shows the maps estimated by two

robots, traveling in an environment of approximately

300 m2, reproducing the structure of a logistic space.
The trajectory followed by each robot is reported with

a red circle denoting the starting point, a green square

indicating the end of the path, and yellow triangles in

correspondence of the rendezvous points, at which the
robots were in line of sight with each other, so that

they were able to measure their relative pose (and the

corresponding uncertainty) using a camera associated

with the laser range finder. Data were then exchanged,

roto-translated in the own reference of each robot, and
used as they were due to measurement acquired by the

robot itself. In this way, even if none of the two robots

physically traveled in the whole scenario, both of them

succeeded in building a similar representation of the
entire environment. As pointed out in a previous pa-

per [31], the maps are not identical, due to the random

nature of the RBPF. Moreover, the upper left part of

the environment is different as it was only visited by

robot 2 after the last rendezvous. However, in practice,
rather than the similarity between the two maps, it is

important to assure that the maps are faithful to the

actual environment. In the same previous paper [31] we

also report several simulated experiments (in which a
ground truth map is available) and we show that the

proposed approach produces maps that are faithful to

the ground truth map, where map similarity is mea-

sured using the acceptance index proposed by Carpin

[58].

A complete video of the experiment (titled “Multi-

robot SLAM in indoor environments”) is available [59].

3.1.2 Active SLAM and Exploration with Particle

Filters using Kullback-Leibler Divergence

During the phase in which SLAM is performed, it is

necessary to quickly complete the coverage of the entire
environment, while guaranteeing a good quality of the

estimated map: a high uncertainty in the map would

prevent the subsequent correct execution of robot tasks.

Active SLAM and exploration strategies can be ap-

plied to counterbalance the two opposite objectives of

(i) visiting unknown places to extend the explored re-

(a) Robot 1

(b) Robot 2

Fig. 5 Maps estimated by the two Pioneer P3-DX during an
experimental test in logistic space-like environment.

gion and (ii) coming back to already visited areas (i.e.,

performing a loop closing) to improve the map qual-
ity. The active SLAM process requires metrics suitable

for the evaluation of the uncertainty, so that proper

bounds on the admissible uncertainty itself can be set.

This metrics allow to define the so-called information
gain of an action, which quantifies the advantage in per-

forming a motion strategy (e.g., exploring new areas or

reducing uncertainty). Although the evaluation of the
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expected gain of an action can be computationally de-

manding, effective and well founded approaches exist

for EKF-based approaches [41]- [43]. The problem of

active SLAM and exploration with particle filters, in-

stead, is not fully understood and recent literature on
the topic remarks several drawbacks of naive entropy-

based metrics [44].

The main contributions to active SLAM and explo-

ration with Rao-Blackwellized Particle Filters (RBPF)

achieved from the research activity of MACP4Log proj-

ect are detailed in previous papers [45]-[47]. First, an

application of Kullback-Leibler Divergence (KLD) [49]
has been proposed with the purpose of evaluating the

particle-based SLAM posterior approximation [45]. This

metric can be applied to quantify the advantage that

the robot gains when reaching a target point. Active
SLAM and exploration can be seen in fact as an opti-

mization problem in which, given the information ac-

quired until the current time (included in the SLAM

posterior), the robot has to choose an exploration tar-

get (i.e., a goal point to be reached) so that the gain
is maximized. The most common approaches give pri-

ority to the candidate targets that maximize the num-

ber of not yet visited cells, addressing in practice only

the exploration problem and neglecting the risk of in-
correct map estimation. The proposed metric has been

instead applied to define the so-called expected infor-

mation from a policy, so to evaluate the probability of

the map estimation to be successful if a certain motion

policy is followed [46].

Let I(mt) = I (p(m|x1:t, d1:t)) be the current map

information, computed from the probability distribu-
tion p(m|x1:t, d1:t), available to the robot at time t,

where m is the map, x1:t is the robot trajectory, and

d1:t includes the available measurement and odometry

data until time t. Assume that a reasonable predic-

tion of the amount of information, which can be ac-
quired when applying the motion policy π to reach

a given exploration target, can be computed. Denot-

ing with I(mt+T (π)) = I
(
p(m|x1:t+T (π), d1:t+T (π))

)
the

predicted map information after the target is reached,
the expected information from policy π is defined as:

E[I(π)] = p(π)[I(mt+T (π))− I(mt)] +

+(1− p(π))[−I(mt)] (1)

where p(π) = p(ξ(p(xt:t+T (π), dt:t+T (π)) < ξ̄)) is the

probability of having an error smaller than ξ̄ in the pos-
terior approximation [45], ξ being the Kullback-Leibler

Divergence between the estimated posterior and the

true posterior.

Different entropy-based information metrics [50] can

be adopted to define the map information I(mt); in our

approach we chose to define it more simply as:

I(mt) := Nt (2)

where Nt is the number of visited cells in the map at

time t. With this choice equation (1) simplifies to

E[I(π)] = p(π)Nt+T (π) −Nt (3)

whereNt+T (π) is the number of predicted observed cells,

computed at time t+T (π), T (π) being the time required

to execute the motion policy π.

A further simplification and normalization can be

introduced, observing that: (i) the term Nt is common
to all the targets, and can then be neglected when com-

paring the gain at different targets; (ii) the expected

information can be normalized by the length of the tra-

jectory corresponding to the motion policy π. The ex-
pected information from a policy is then finally defined

as:

FEI
.
=

1

�
p(π)Nt+T (π) (4)

where � is the distance to be traveled.

The results of several, extensive tests are reported

and deeply discussed in a previous paper [48]. Typical

indoor environments, as well as benchmarking scenar-
ios belonging to SLAM literature, have been considered

to compare the performances of the proposed FEI met-

ric approach with state-of-the-art techniques, like joint

entropy [50], [51], expected map information [44], and a
naive metric, simply defined as:

GN := Nt+T (π) −Nt (5)

Here we summarize only the main results obtained for

the autonomous exploration tests performed in simula-
tion on three well-known benchmarking scenarios, i.e.,

the ACES building at the University of Texas (which

covers an area of about 45 m by 40 m) in Figure 6(a); 2)

the Intel Research Lab in Seattle (with size of 28 m by

28 m), in Figure 6(b); and 3) University of Freiburg 079
(FR079) building (in which the main corridor length is

about 36 m) in Figure 6(c). The results of the tests have

shown that:

– The average acceptance index [58] (defined with re-

spect to the available ground true maps, consider-

ing 10 repetitions of each test) obtained with FEI

was comparable or greater than the values result-
ing from all the other metrics for all the scenarios.

The achieved average values for FEI were: 0.77 for

FR079, 0.80 for Intel, and 0.63 for ACES.
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– The number of failures in determining an acceptable

map with FEI was the lowest one in all the cases,

and in particular no failure occurred for the FR079

building, while for the ACES building the proposed

approach resulted to be the only one able to produce
an acceptable map in 40% of the tests (i.e., 6 fail-

ures over 10 repetitions), whereas all the other tech-

niques failed (9 or 10 failures over 10 repetitions).

This scenario was in fact the most challenging one,
since the presence of crossroads requires an effective

exploration strategy able to recognize the possibil-

ity of closing a loop (it is the scenario more similar

to a logistic-like environment), while the other two

have structures which intrinsically force the robot
to revisit known places.

It is finally worth to notice that not only a poor ex-

ploration strategy may affect the map quality, but also
the reverse implication holds: a poor map estimate may

easily lead to exploration failure. An example of this sit-

uation is reported in Figure 7: the robot is not able to

correctly close the loop, and in the estimated map it

appears a new corridor that needs to be explored; in
the real map, however, the robot is in a known area.

3.2 Robot localization and map updating

Once the map of the environment has been collabora-
tively created by the team, the correct localization of

the robots with respect to such a map must be main-

tained, since it represents a prerequisite necessary to all

the main tasks of the team of robots.

Potentially the multi-robot case gives some interest-

ing advantages, since the accuracy of the robots pose

estimates can be improved by mutual detections, even

if wireless communication and data sharing problems

must be considered. Monte Carlo Localizaton (MCL)
methods approximate the probability density to be esti-

mated using a finite set of samples [12]-[15], while other

methods employ unknown but bounded error models

for the sensor measurements [16], [17].

Unfortunately, without some external absolute in-

formation, a correct global self-localization cannot be

performed in a short time by a single robot when the en-

vironment is highly symmetrical, like in a logistic area.

For this reason multi-robot coordination can be used
to improve the quality of self-localization estimates that

single robots could achieve on the basis of their own sen-

sors only. Subsections 3.2.1-3.2.2 sketch the proposed

approach for our applications [36]-[38], benefitting on
the one hand from the mutual position estimates com-

ing from the other robots, and on the other hand from

a WiFi infrastructure present in the environment [18].

(a) ACES building

(b) Intel Research Lab

(c) Freiburg 079 building

Fig. 6 Maps of the benchmarking scenarios used for the com-
parative autonomous exploration tests.

Beside the high symmetry of the environment, there

is a further specific characteristic of a logistic scenario

that cannot be neglected in order to constantly guaran-
tee the correct localization of the robots: the environ-

ment is intrinsically dynamic, since the goods stored in

appropriate places can be removed and substituted by

other items many times during the day. This implies
the necessity of periodically updating the map, so to

include the detected variations and continue to prop-

erly localize the robots without going back to a SLAM

phase, as if the environment were completely different.

Subsection 3.2.3 illustrates the proposedΔ-mapping

approach [19], [29], which allows the robots to detect
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(a)

(b)

Fig. 7 (a) Estimated map with: estimated robot position
(red dot), estimated robot trajectory (red line), and planned
robot trajectory (blue line); (b) Ground truth map with: ac-
tual robot position (red dot), real trajectory (red line), and
planned trajectory (blue line).

variations in the environment, generate a map contain-

ing only the persistent variations, propagate this map
to the team and finally merge received information in

a consistent way. Moreover team coordination is also

exploited to assure the coverage of areas that have not

been explored for long time, thus improving the knowl-

edge on the present status of the map.

3.2.1 Multi-robot Localization in Highly Symmetrical

Environments

The main contributions to the problem achieved during
the MACP4Log research activity can be found in some

previous papers [36]-[38]. The approach we proposed is

based upon a particle filter cooperative Monte Carlo Lo-

calization (MCL) method and implements a three-stage
procedure for the global localization and the successive

position tracking of each robot of the team. The algo-

rithm is able to exploit small asymmetries in the envi-

ronment and spread this knowledge among team mem-

bers, thus enhancing speed of convergence and robust-

ness. Our approach extends the MCL approach pro-

posed by Fox et al. [12] by introducing a three-state

machine; the proposed solution does not use any abso-
lute sensor data (e.g., GPS), that would be unavailable

in indoor areas such as logistic warehouses. Online sim-

ulations and experimental tests, which investigate dif-

ferent situations with respect to the number of robots
involved and their initial positions, show how the pro-

posed solution can lead to the global localization of each

robot, with a precision sufficient to be used as starting

point for the subsequent robot tracking.

A preliminary solution [36] was proposed to solve
the multi-robot localization problem using an algorithm

based on two states only, but applied to a completely

symmetric environment, with absolute heading mea-

surements only occasionally available from a compass
sensor.

We subsequently proposed the main approach, called

3SMCL [37] and [38], which relies on distance measures

only, under the assumption that the environment is not

completely symmetric.
The first improvement with respect to the approach

proposed by Fox et al. [12] is the use of a finite state

machine, composed by three states: 1) GL = global lo-

calization, 2) UN = undecided, and 3) PT = position
tracking, as shown in Figure 8.

Fig. 8 The states and the thresholds.

The team members are able to detect each other by
using visual markers (in our case one-dimensional bar-

codes were used) and send global position hypotheses

to the detected robots over a communication network.

Each robot then makes use of the received hypotheses

according to its localization state. In the GL state the
robot is performing global localization, so the received

hypotheses are directly included in its particle filter; in

the UN state the particle filter has already converged

to few dominant hypotheses but the robot is unable to
decide which one is the correct one. In the PT state the

particle filter has only one dominant hypothesis and all

the received hypotheses are in accordance with the one
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estimated by the robot. The passage between states is

done using suitable accordance functions, as detailed

hereafter.

The algorithm running onboard each robot is a typ-

ical Montecarlo localization approach [52]. The predic-
tion phase is a classical one, and it computes a vector

pi(t) containing the predicted pose (in terms of global

coordinates (x, y, θ)) for each particle.

Let R = {ri : i = 1, . . . , NR} be the set of robots
deployed in the area; with t we indicate the time vari-

able that clocks the whole localization algorithm. Let

k denote a time instant at which the position of the

i-th robot is detected by a set of robots Ri(k) ⊆ R,

(|Ri(k)| being its cardinality). The robots belonging to
Ri(k) send their measurements to the i-th robot, which

collects them in the following matrix:

hi(k) =

⎡
⎢⎣

x̂1
i (k) ŷ1i (k)
...

...

x̂
|Ri(k)|
i (k) ŷ

|Ri(k)|
i (k)

⎤
⎥⎦ (6)

where x̂j
i (k) and ŷji (k), j = 1, . . . , |Ri(k)| are vectors

containing the estimates of the position of the i-th robot

expressed in Cartesian global coordinates. The position
estimates contained in the j-th vector are generated

starting from the position hypoteses of the j-th robot

that has detected robot i. These position hypotheses are

the result of a Density-Tree clustering [12] procedure

applied to the set of particles.
The purpose of the update phase in our approach is

twofold. It provides a vector wi(t) containing the impor-

tance factors for each particle, and it verifies whether

the robot contains position estimates outside the map.
If this is the case, their weight quickly decreases. At

each time k, if Ri(k) is empty, a classic Kullback-Leibler

Divergence (KLD) resampling occurs [52]. If instead

Ri(k) is not empty, a modified version of the KLD

resampling algorithm is applied (called Mutual KLD
[38]). This modified resampling strategy allows to re-

fine the probability distribution on the position of a

robot using the estimates on its position given by other

robots, and to determine the suitable number of par-
ticles needed to approximate the distribution accord-

ing to the KLD distance. Consider a set of position

hypotheses hi(k) of cardinality nhyp received at time

instant k; let Nkld be the number of particles used to

approximate the belief on the pose of the robot with-
out taking into account the position hypotheses hi(k).

Nmax denotes the maximum number of particles. If

Nkld is greater than Nmax − Nhyp, we reduce it to

Nmax − Nhyp, where Nhyp is the maximum number of
particles that can be used in this case to approximate

the probability distribution of the nhyp position hy-

potheses. Then the suitable number of particles N i
mkld

needed to approximate the i-th hypothesis is calculated

as

N i
mkld =

1

2ε
χ2
k−1,1−δ (7)

where χ2
k−1,1−δ is a chi-square distribution with 1 − k

degrees of freedom. This value is the required number

of particles to guarantee that with probability 1 − δ

the Kullback-Leibler distance between the Maximum

Likelihood Estimate (MLE) of the position hypothesis

and the true distribution is less than ε.
At every instant robot i has a set of Nh hypothe-

ses Φi(t) = {φj
i (t)}, j = 1, . . . , Nh, and a best hy-

pothesis φbest(t). Each hypothesis is defined as φj
i (t) =

{pji (t), Σj
i (t),W

j
i (t)}, where pji (t) is the predicted pose,

Σj
i (t) its covariance matrix, and W j

i (t) the associated
weight, representing its confidence level.

The best hypothesis at time t is defined as φb
i (t) =

argmaxW j
i
(Φi(t)) = {pbi(t), Σb

i (t),W
b
i (t)}. The center

of mass of its own hypotheses is defined as

p̄i(t) =

Nh∑
j=1

pji (t)

Nh
(8)

The mean distance among the hypotheses belonging to
robot i is defined as

dist =

Nh∑
j=1

√
(x̄i(t)− xj

i (t))
2 + (ȳi(t)− yji (t))

2

Nh
(9)

Switching rules among the three states are based on the

following accordance function:

μk =

k∑
q=k−n

|Ri(q)|∑
j=1

√
(x̂j

i (q)− x̂b
i (t))

2 + (ŷji (q)− ŷbi (t))
2

n|Ri(q)|
(10)

where n is the length of the sliding window used to

compute the average in (10). This quantity is an average
on the distance between the hypotheses and the best

position estimate of the i-th robot, averaged over the

last n times the i-th robot has been detected. It must be

noted that both (8) and (10) do not consider the weights
of the hypotheses. This is due to the particular case

of localization in highly symmetrical environments. In

this situation, it can frequently happen that a position

hypothesis with a high weight is not the correct one.

Therefore, using weights in (8) and (10) may lead to
wrong performance monitoring.

If the robot is in the UN state and it is deciding

whether it can switch to PT, n is set equal to nu2p. If

the robot is in the UN state and it is deciding whether
it has to switch back to GL, n is set equal to nu2g. The

inner summation in (10) averages the distances among

the elements of hi(k) and the best position hypotheses
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of the i-th robot. The outer summation in (10) performs

a moving average of length n on the results of the inner

summation. Therefore μk measures the accordance be-

tween the actual belief on the position of the i-th robot

and the average of the beliefs that the other robots
have on its position at time k. When μk is lower than

a certain threshold μu2p (empirically determined) the

algorithm switches to PT. μk is computed also during

the position tracking phase: if μk becomes greater than
a given threshold μp2u, the algorithm switches again to

UN. When the robot is in GL, it switches to UN if and

only if the distance among the hypothesis defined in

(9) is smaller than a certain threshold μg2u. The values

of the various thresholds that are present in the algo-
rithm are empirically determined, taking into account

the environment characteristics, mainly its dimensions.

Since it is extremely difficult to formally prove the

convergence of the particle filter to the true position of
the robot, we provided extensive experimental valida-

tion about the reliability of the localization when the

robots reach the PT state. It should be noted that the

importance of knowing when all the robots are correctly

localized is crucial from the application point of view,
since only when all the team members are localized the

application tasks assigned to the team can be carried

out.

In order to validate the effectiveness of the proposed
algorithm, we carried out a series of localization tests

in both simulated and real environments to evaluate

localization performances, scalability of the approach

with respect to the number of robots in the team, and

robustness to changes in the environment. The results
are reported in a previous paper [38]; a short video,

titled “Three-state Multirobot Collaborative Localiza-

tion in Symmetrical Environments” is available [59].

Figure 9 reports the average localization error for a
team of NR = 6 robots over nl = 100 localization

runs in the same map used in the work by Fox et al.

[12]. The map is shown in Figure 10 for reference. The

robots were starting at random locations for each run

and moved using a simple obstacle avoidance algorithm.
We can see that the localization error decreases approx-

imately linearly for all the robots, and the mean error

among all the robots (dashed line in Figure 9) reaches

a final value below 0.4 m.

As stated in a previous paper [38], the results are
comparable with the approach proposed by Fox et al.

[12]. It should be noted that in their work the sim-

ulated robots, as well as the recognition of the other

robots, were ideal, while in our simulations we used a
physical simulator, a simulated camera sensor and in-

troduced appropriate sensor noise. We also show the

results of nl = 5 mutual localization experiments in a

Fig. 9 Simulation test 1: average localization errors.

Fig. 10 Simulation scenario for test 1. White represents free
areas, while black represents occupied areas.

real symmetric environment (see Figure 11) of dimen-

sions 20×12 m using NR = 3 robots randomly placed

in the environment. Figure 12 shows the average local-
ization errors. Each plot represents the average error

among the 3 robots over one experiment. The ground

truth to evaluate the localization error has been gener-

ated offline using our grid-based SLAM algorithm [31].

This algorithm also outputs laser-corrected odometry,
which is accurate enough to be used as ground truth

for the trajectory of the robot.

It can be noticed that the robots are able to spread

information about the small asymmetry in the top-left
corner and are able to correctly localize after 50 s.

3.2.2 Wi-Fi Based Robot Localization

In indoor locations GPS is generally not suitable to be

used for global localization, since GPS signal is atten-

uated and scattered by roofs and walls; moreover, even
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Fig. 11 Scenario for real experiments.

Fig. 12 Real experiments: average localization errors. Each
plot represents the average localization error among the 3
robots over one experiment.

in outdoor areas, metallic canyons can negatively af-
fect GPS transmission. On the other hand range-based

localization can be subject to slow convergence and am-

biguity due to symmetries, as discussed in Section 3.2.1.

In order to overcome these limitations, the use of

Wi-Fi signal can be exploited. Wi-Fi networks are nowa-

days getting more and more widespread in many public

places; we assume that a warehouse is already covered
by several access points or such an infrastructure could

be easily and inexpensively deployed. Moreover a Wi-

Fi network is already employed for communication be-

tween rovers in the scope of the project.

In literature there are mainly two categories of lo-

calization systems using the Wi-Fi signal strength. In
the first one an explicit mathematical model of the ex-

pected signal propagation is employed. These modeling

methods are effective to determine a user or a rover

location, but they rely on the knowledge of the Access

Points (APs) position [39]. While this knowledge is easy
to obtain in an industrial environment, we addressed a

more general case in which the number and location of

access points in the environment is unknown. Methods

in the second category deal with Wi-Fi mapping strate-
gies, and exploit received signal strength to infer posi-

tion by using reverse functions based on fingerprinting

and/or radio maps [40].

In a previous paper [18] we proposed a hybrid single-

robot localization approach using both a Wi-Fi receiver

and a traditional laser range finder. We first built ra-

dio maps modeling the signal strength of the APs as a

function of robot position.
Then we investigated the problem of robot localiza-

tion using two approaches. In the first approach we for-

mulated the localization problem as a simple optimiza-

tion problem, while in the second one integration with
particle filters based localization was provided, too.

Given a set of APs, A = {Ak}, k = 1, ..., |A|, a set

of radio-maps is built by interpolating the data coming

from a sampling procedure. The set of radio-maps is

denoted as RM = {RM
k , k = 1, ..., |RM |}, |RM | = |A|

where RM
k represents a grid map indexed by l and m

respectively for rows and columns, where l = 1, ..., L

and m = 1, ...,M .

Wi-Fi positioning can then be performed by com-
paring measured Received Signal Strength (RSS) val-

ues with the values stored in RM and solving a mini-

mization problem. At each time instant, given the RSS

measured from the k-th AP at the robot location rk, we

define the matrix R̂M
k = [r̂l,mk ] We define for each point

of the map the Euclidean distance among the values in

the |RM | radio maps and the corresponding measured

values R̂M
k as:

Dl,m =

√√√√ |A|∑
k=1

(RM
k − R̂M

k )2 (11)

According to the first proposed approach, the rover po-

sition is found as the minimum value of the surfaceDl,m

using a simple gradient descent with negligible conver-
gence times.

In the second approach, we proceeded to integrate

the result of the Wi-Fi based localization technique

with our particle filters based localization algorithm

considering two levels of integration, a loose one and
a tight one. In the first case WiFi-based localization

provides a position estimate, with a fixed covariance

error; in the second case the radio maps are used as

additional inputs for the particle filter-based localiza-
tion. The main motivation of these hybrid approaches is

to exploit the advantages of both laser (high precision,

but subject to ambiguity in symmetrical environments

typical of logistic spaces) and Wi-Fi (less precise, but

exempt from the previously mentioned ambiguity) po-
sitioning in order to achieve more efficiency in terms of

precision, convergence, and reliability.

Experimental results show that both the proposed

integrations improve the performances of the laser based
localization, and in particular the tight integration with

the particle filter achieves the best performances in lo-

calization [18]. We report in Figure 13 the results we
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Fig. 13 Experimental test: average localization errors from
the minimization approach (black dots), the laser-based ap-
proach (green line), the loose integration (red line), and the
tight integration (blue line).

obtained in a large open environment. The area is rect-

angular (40 × 20 m) and obstacle-free. The black dots

are the average localization error from the minimization
approach, the green line is the result of the standard

particle filter approach based on laser-scanner only, and

finally the red line is the result of the loose integration,

while the blue line is the result of the tight integration.

The error values in the plot are averaged over nl = 10
experiments. We can see that on average the error of

the optimization approach is bounded, with values be-

tween 5 and 10 m. We also notice that on average both

loose and tight integration approaches converge about
50 s sooner than the laser-based approach.

3.2.3 Multi-robot Map Updating in Dynamic

Environments

Many real robotic applications require long-term map-

ping operativity in presence of persistent variations in

the map, i.e., variations which alter the state of the
environment not for very short periods, as in case of

occasional people moving, but for long time intervals,

as in the case of logistic scenarios, where the goods to

be tracked can be removed and substituted by other
items many times during the day. In some previous pa-

pers [19], [29] we proposed a methodology that allows

the robots to detect variations in the environment, gen-

erate a map containing only the persistent variations,

propagate this map to the team and finally merge re-
ceived information in a consistent way. Moreover team

coordination is also exploited to assure the coverage of

areas that have not been explored for long time, thus

improving the knowledge on the present status of the
map. The map updating process is demonstrated to be

computationally light, and can be performed in parallel

with other tasks.

The team of mobile robots is supposed to be cor-

rectly localized with respect to the available environ-

ment map. This means that each robot is in the posi-

tion tracking state [36], [37]. An occupancy grid map of

the environment, previously created, is available to the
robots. At discrete instants k the environment changes,

and consequently the robots have to modify the map,

to take into account the variation. We call this phase a

Δ-mapping step.

We define the set of new maps collected by a robot

up to time k as M(K) = {Mk}, k = 0, . . . ,K, where

M0 is the initial map, obtained by the SLAM procedure.

The goal of the algorithm is to provide an estimate

M̂k of the map at each time step k.

Furthermore, as the environment changes over time,

it is desirable to keep track of the maximum possible

number of variations, both for monitoring tasks (e.g.,

monitoring pallet movements in a storage area) and in
order to minimize the number of Δ-mapping steps.

The architecture of the single-robot algorithm run-

ning onboard each robot is reported in Figure 14. More

details regarding the different functional blocks can be

found in a previous paper [19].

The Δ-Awareness block is able to detect persistent

variations in the environment, using a technique called

weighted recency averaging, which is normally applied

in the problem of tracking non-stationary processes [52].

In our setting, the weighted recency averaging is em-
ployed to recognize changes in the environment, under

the hypothesis that the robot is correctly localized and

never kidnapped. When a persistent variation in the

map is detected, the Store scan block starts to collect
current laser scan readings l and current robot poses p

and store them in matrices P and L

P =

⎡
⎢⎣
x̂1, ŷ1, θ̂1

...

x̂n, ŷn, θ̂n

⎤
⎥⎦ (12)

L =

⎡
⎢⎣
l1

...
ln

⎤
⎥⎦ (13)

where the n-th entry is the last element stored. These

matrices are used by the Scan Alignment block to cre-

ate a local Δ-map containing the changes in the envi-
ronment detected by the robot. Finally, the Map Merge

block receives the updated map from the Scan Align-

ment block and merges it with the map that the robot

is currently using for localization. The output of this
merge process is a new map Mk.

The concept of time-map is introduced linking to

each cell a value depending on the time passed after
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Fig. 14 Functional blocks of the Δ-mapping algorithm.

the cell has been observed for the last time. High time-
map values (close to 1) are assigned to cells belonging

to recently mapped areas, while low values (close to 0)

correspond to cells that have not been observed by the

robot sensors for a long time.

The time map Tt is updated every time a laser scan
is available to the robot; a ray tracing procedure is ap-

plied for each angle of the scan, assigning a maximum

value equal to 1 to every cell crossed by a ray. At each

time step all the values in Tt are updated according to

Tt(i, j) = Tt−1(i, j) ·
(
1− Δt

Ct

)
(14)

where Δt is the time elapsed from the last update of Tt,

and Ct is a time constant which defines the forgetting

speed.

When a new map Mk has been created by a robot, it
is sent to the other team members via a communication

network, including the current time map Tt.

When a robot receives a new map M̂ ′ and a time-

map T ′ from another robot, it merges the received time

map with the previous map M̂k−1 and the local time-
map Tt in order to produce M̂ ′

k−1. Tt is also updated.

For all the couples i, j the value of the cell M̂ ′
k−1(i, j)

is set equal to the cell M̂ ′(i, j) if T ′(i, j) > Tt(i, j), oth-

erwise it is set equal to M̂k−1(i, j). The value of the

cell Tt(i, j) is set equal to T ′(i, j) if T ′(i, j) > Tt(i, j),
otherwise it is not modified. Cells belonging to areas

that have been recently mapped have high correspond-

ing time-map values (close to 1), so recent changes in

Fig. 15 The simulation environment for the Δ-mapping ex-
periment.

the map resulting from a local Δ-mapping process are

not discarded.

A team coordination strategy that actively searches
modifications in the map has been developed. Without

any coordination strategy all the robots could follow

the same path or leave some areas not visited for a long

time. This problem can be treated in partial similar-

ity with the problem of multi-robot exploration. In the
exploration approaches the aim is to discover a map

starting from a completely unknown environment. In

the considered case, the initial map is known, as well

as the robot pose, but since the environment is persis-
tently changing (pallets are added and removed), the

reliability of the initial map decreases over time on the

basis of the number of changes in the environment. For

this reason, areas that have not been recently visited

may become completely unknown, as the reliability of
the map in those areas is very low. Each robot keeps a

time-map Tt updated at every step. Every time robot

i receives a Δ-map M ′ from robot j, it receives also

the time-map T ′. The time-maps are then merged by
keeping for each cell the one with the lowest value. Ar-

eas that need to be covered are the ones for which the

corresponding value of the time-map is below a given

threshold. For each robot, a set of points is extracted

to feed the path planning algorithms from a topological
map, which is constructed from the grid-map represent-

ing the areas to be visited.

The performances of the Δ-mapping process have

been tested in long term operativity. The simulation

scenario is sketched in Figure 15, where each block rep-
resents a container. A virtual fork-lift is present that

adds and removes containers every two minutes. In this

test the map updating process lasts for approximately

9.5 hours, for a total number of 328 variations. Figure
16(a) shows the localization error for a single run, while

Figure 16(b) shows the acceptance index [58], which

measures the accuracy of the map estimate, over 328
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variations. The sudden increase of the localization er-

ror after approximately 6 hours is due to one of the

robots losing its localization for a short period of time.

This is due to the fact that the robot was traveling in

an area with several variations. However as the robot
receives an updated map it is able to recover itself. The

acceptance index decreases to 0.97 after 9.5 hours, while

in a similar experiment [19] the same error occurs after

only 6 hours.

The video “Map updating in dynamic environments”

[59], relative to a long term experiment, shows how the
map is updated online, while the robot travels toward

the targets that are subsequently assigned to it. The en-

tire sequence of map variations over two hours is quickly

reproduced in the last part of the video.

(a)

(b)

Fig. 16 Localization error (a) and acceptance index (b) for
long-term Δ-mapping experiment

3.3 Path planning and task allocation

In a mobile robotic application, and in particular in a

dynamic environment such as a logistic warehouse, one

of the main prerequisites is the ability for the robots

to travel avoiding static obstacles, like pallets or oc-

cupied areas, as well as moving obstacles like working

machines, other robots, and people. At the same time

the robots must be able to travel to arbitrary places
in the environment, by following a path which is mini-

mum with respect to travel distance, time of travel, risk

of collision, maximization of the Wi-Fi coverage.

A two-level approach has been implemented for our

application, due to its flexibility: a local path plan-

ner, which implements the VFH+ (Virtual Field His-

tograms) algorithm [33], is employed for obstacle avoid-
ance, while a global path planner is built at a higher

level using the wavefront algorithm [32].

The implementation of the VFH+ local path plan-
ner allows reaching goals relative to the robot local

frame, using wheel odometry and a laser range finder

while avoiding obstacles.

The global path planner is an implementation of the

wavefront algorithm, which is able to find a sub-optimal

path from a starting point to any reachable goal, un-

der the assumption that a 2D grid-map representation
of the environment is provided. The main advantages

of the algorithm are that it is well-suited for grid-map

representations of the environment and that it is usu-

ally faster than optimal approaches, such as A∗. Even
if there is no guarantee of finding the optimal path,
the algorithm surely finds a solution if it exists, and

this solution is demonstrated to be reasonably near to

the optimal one [32]. Once a suitable path from the

robot position to the desired goal has been found, it
is sub-sampled by discarding points which are reach-

able from previous ones with along a straight line by

the robot (taken into account the radius of the robot

and its kinematics). Such a procedure provides a set of

waypoints, which are fed to the local path planner to
obtain a smooth path.

This two-level path planning approach has been used
throughout all the simulated and real experiments that

have been presented in the previous sections.

Besides navigation and mapping the robot may be
required to perform different tasks in the logistic space.

Having a set of tasks, each task must be assigned to one

of the robots in an efficient way in order to minimize

some cost function. Two main constraints characterize

the considered scenario: Wi-Fi based communication
between robots is not always reliable (e.g., some robot

can be temporarily out of range and unable to com-

municate with other team members), and task alloca-

tion strategies should be robust with respect to possible
faults during task execution (e.g., a robot that is not re-

sponding due to hardware or software problems should

not interfere with the other members of the team).
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In order to deal with these issues we adopted a dis-

tributed market-based approach for our system. Our

implementation is based on auctions, and it has been

developed starting from the one proposed by Smith [35].

Every goal point is assigned to an auction using a multi-
cast network channel; the robots reached by the auction

compute and send back a bid. The auctioneer assigns

the task to the robot with the best bid. The bid is com-

puted according to the robot current position and its
tasks queue. This approach does not guarantee the op-

timal solution, but is more robust to communication

failures. Moreover in our approach the role of the auc-

tioneer is always given to a different robot, thus avoid-

ing the problem of single point of failure. The only con-
straint is that the internal clocks of the team members

should be roughly synchronized, because the auction is

valid only for a short period of time during which all the

robots must answer with a bid. Bids that arrive once
the auction is closed are discarded.

In our system we implemented three kinds of tasks:

GOTO, PATROL, EXPLORE. While they all consist

in reaching a particular place in the map, the behavior

of the robot is slightly different for each task. For the
GOTO task the robot has to reach a particular pose in

the environment; for the PATROL task the robot has to

reach a given pose and start patrolling the surrounding

area. Finally, for the EXPLORE task the robot has to

reach a given pose and then start wandering (random
motion).

This task allocation service has been applied to all

other services, in particular to the Δ-mapping service,

and in all the experiments carried out throughout the

project, proving to be fast and reliable in real scenarios.

4 Operational services

The management of a logistic space involves several

tasks which can be carried out autonomously by the

robotic team presented so far. Goods in the warehouse

need be tracked, flow of products recorded and presence
of people and intruders has to be monitored. In our im-

plementation we consider two main service typologies

that robots can provide, namely logistic services and

monitoring services.

The formers are relevant for system management
and goods tracking. We analyze a scenario in which

goods (containers, pallets, or single products) are en-

dowed with RFID (Radio Frequency IDentification) tags.

The term RFID refers to a communication technol-
ogy in which units, univocally distinguished through

identifiers, can exchange information by means of radio

frequency, within a certain range, also without line-of-

sight between communicating devices. RFID technol-

ogy is based on two main elements:

– Tag: it is a radio-frequency transponder, that in-
corporates an integrated circuit, connected with an an-

tenna, with a simple control logic unit and limited stor-

age capability (usually hundred of bytes or few Kbytes);

– Reader: it is a controller device that interrogates

tags and retrieves information from them. It often pro-

vides measurements of Received Signal Strength Index

(RSSI), which can be used to obtain a rough estimation
of reader-tag distance.

In the last few years, RFID technology has received

great attention for object identification and tracking,
and it is currently used in several logistic applications

(see for instance [7], [8], and the references therein).

Goods tagging provides a reliable and unambigu-
ous methodology for robots to identify product flow

in the environment [9]. Each robot is equipped with

a RFID reader and is able to detect the presence and

measure the distance from tags within a nominal range
of 10− 100 m (active tags). Range measurements with

RSSI are imprecise and affected by several parasite phe-

nomena such as signal fading, reflection and multipath.

On the other hand once the robots are well localized

within the environment, the positions of tags can be
efficiently estimated via maximum likelihood or other

well known techniques (see our previous works on range

localization [10], [11]). In Figure 17 it is possible to ob-

serve an example of RFID position estimation, in which
each good is shown with a red dot superimposed on the

map of the logistic space. In such a scenario the oper-

ator can monitor the position of the products, ask the

system to indicate in which area a good is stored, and

let the robot reach a given product. The robot team,
while traveling, detects the tags and communicates to a

control station all the information retrieved. Hence the

team keeps trace of the product flow, which is recorded

in a natural, inexpensive, and autonomous way.

The second service typology, namely the monitor-

ing service, includes activities such as intruder detec-

tion, video streaming and access control. Although not
strictly related to the logistic application, this service is

crucial for enhancing situation awareness of the human

operator who has to supervise the system. Access con-

trol can be easily performed when the employees are en-

dowed with radio badges for accessing the logistic area,
as it often occurs. Under this assumption, people pres-

ence and identification can be tackled with the same

approach reported for goods tracking. Cameras provide

the visual information needed by the operator and can
be used for surveillance when the logistic space is in idle

phases. It is worth noticing that the use of camera asso-

ciated with RFID technology (badge or tags) allows to
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Fig. 17 Tag position estimation. We simulate the case in
which each pallet (blue square) in the logistic scenario con-
tains 12 items, each one tagged with an active RFID. Dur-
ing navigation, a mobile robot can detect tags and measure
their distance using the on-board RFID reader. Then, using
the approach described in [11], tags’ positions are estimated
from the distance measurements. Estimated tag positions are
shown as magenta dots in the figure.

perform efficient and reliable intruder detection: mov-

ing objects which are not identified by a proper RFID

device are classified as an intruder and the robot acti-

vates a streaming video towards the operator via HMI,

to let him verify the nature of the unexpected presence.
Recently, successful tests of people tracking and follow-

ing have been carried out by using a Microsoft Kinect

mounted on the mobile robot. The user is detected us-

ing Histogram of Oriented Gradients features [27] and
recognized using linear Support Vector Machines. The

distance of the user relative to the robot is then ob-

tained directly from the Kinect sensor. In this way, the

robot is able to track the position of the user in 3D.

Figure 18 reports the results of an experiment in

which the robot is able to track and follow a user in
real-time along a series of corridors; some videos are

available, too [59].

5 Conclusions

The paper has reported and discussed the main results

of the MACP4Log research project, aimed at the study

and development of a set of algorithms and services,
enabling autonomous navigation of a team of mobile

robots in large logistic spaces, to cooperatively carry

out operational services.

Since the project was not aimed for a specific ap-

plication, it has been possible to consider various sce-
narios, analyzing and developing different strategies to

achieve solutions suitable for a variety of possible prob-

lems and difficulties in logistic environments. At the

Fig. 18 User following with Kinect sensor. Red points rep-
resent the robot trajectory; blue points represent the position
of the user over time relative to the robot position.

same time, the lack of a particular, fully defined ap-

plication to be performed has left some practical issues
only partially figured out. The main ones are relative to

the adopted robotic platforms, which are suitable quite

exclusively for indoor environments (as revealed by the

tests carried out in the car deck of the Ignazio Messina
& C. S.p.A. company), not sufficiently robust for any

industrial environment, and lacking of any manipula-

tion ability, since no robotic arm has been mounted on

them. At the same time it must be underlined that,

even if the project was targeted to logistic environ-
ments, the developed algorithms and strategies can be

easily adapted to other applications.

Current research is aimed at the implementation

of the developed mapping, localization and exploration

approaches into a ROS framework (Robot Operating
System [67]) for monitoring of a data center by means

of a robot team equipped with suitable sensors, like

thermal cameras. ROS nodes will be soon publicly re-

leased.
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