
Map updating in dynamic environments
Fabrizio Abrate, Basilio Bona, Marina Indri, Stefano Rosa and Federico Tibaldi
Politecnico di Torino, Italy

Abstract

While building maps when robot poses are known is a tractable problem requiring limited computational complexity, the
simultaneous estimation of the trajectory and the map of the environment (known as SLAM) is much more complex and
requires many computational resources. Moreover, SLAM is generally peformed in environments that do not vary over
time (called static environments), whereas real applications commonly require navigation services in changing environ-
ments (called dynamic environments). Many real robotic applications require updated maps of the environment that vary
over time, starting from a given known initial condition. In this context classical SLAM approaches are generally not
directly applicable: such approaches only apply in static environments or in dynamic environments where it is possible
to model the environment dynamics. We are interested here in long-term mapping operativity in presence of variations in
the map, as in the case of robotic applications in logistic spaces, where rovers have to track the presence of goods in given
areas. In this paper we propose a methodology that is able to detect variations in the environment, generate a local map
containing only the persistent variations and ¿nally merge the local map with the global one used for localization.

1 Introduction

Localization and map building are closely linked problems,
and are often referred to as simultaneous localization and
mapping (SLAM). While building maps when robot poses
are known is a tractable problem with limited computa-
tional complexity, in the SLAM case the uncertainty in
measures and in robot pose estimates makes the problem
much more complex.
Among all the possible strategies, two main solutions for
the SLAM problem exist.
The ¿rst one models the environment using features
and manages the associated uncertainty by the Extended
Kalman Filter (EKF). This approach is extremely com-
pact and its computational cost has been considerably im-
proved. For instance in [11] an EKF SLAM algorithm is
described where the computational complexity per step is
reduced from O(n2) to O(n), and the total cost of SLAM
is reduced from O(n3) to O(n2), being n the number of
features.
The main drawback of this technique is its dif¿culty to
model different types of environments, due to the limited
set of feature models available.
The second solution [13] solves the SLAM problem us-
ing particle ¿lters, which are sequential Monte Carlo meth-
ods to estimate posterior probability distribution functions.
This approach is suitable to be used in unstructured envi-
ronments, especially when combined with a grid represen-
tation of the considered environment, but it suffers from
high computational cost due to the usually high number of
particles required to approximate posteriors.
Some attempts have been made in order to reduce the com-
putational cost of this technique. In [10] a new solution
to the grid-based SLAM problem based on the stochastic
search of the best pose estimate is proposed. This solution
decreases the computational cost compared to other solu-
tions. In [7] adaptive techniques that reduce the number of
particles in Rao-Blackwellized particle ¿lters are used.
Many real applications require updated maps of the envi-
ronment that vary over time, starting from a given initial

condition. This is for instance the case of robotic appli-
cations in logistic spaces, where robots have to track the
presence of goods in a certain area. The goods are stored
in appropriate places, but during the day they can be re-
moved and substituted by other items many times.
This paper deals with the problem of keeping the map up-
dated, in order to guarantee the robots localization; speci¿c
goods tracking procedure are not investigated.
The initial map can be a-priori known or built using a clas-
sical SLAM algorithm. In the latter case, the environment
is supposed to be static during the initial SLAM process.
Then the environment starts to change, and the map needs
to be updated, as modi¿cations are sensed by the robot.
During the map update process, there are mainly two issues
to be considered:

1. a long-term operativity is required;

2. the algorithm performing the map update has to be
computationally light and to use limited memory.

The ¿rst item is mandatory since in real applications map
variations may occur continuously for a long period of time
(even an entire day), and the map updating process should
be carried out as long as possible without diverging.
The second item is very important when the map updating
process has to be carried out in parallel with other tasks,
(e.g., team coordination and planning, surveillance).
A combined algorithm for map update and robot localiza-
tion is proposed in [14], while a method for updating the
map dynamically during the process of localization is de-
veloped in [9]. This method seems very promising but its
experimental validation is still only partial. The problem of
grid mapping through belief propagation is investigated in
[12], assuming that good estimates of the robot position are
available. A spatial Markov random ¿eld model is applied
to a mine¿eld mapping. Two things are required: the list of
the type of objects that populate the environment and the
a-priori knowledge about where the objects are positioned.
Finally [5] introduces a dynamic map representation for
mobile robots that adapts continuously over time. It

ISR / ROBOTIK 2010

296ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

solves the stability-plasticity dilemma (the trade-off be-
tween adaptation to new patterns and preservation of old
patterns) by representing the environment over multiple
timescales simultaneously.
In this paper we propose a methodology that is able to:

• detect variations in the environment;

• generate a local map containing only the persistent
variations;

• merge the local map with the global one used for lo-
calization.

The variations of the environment are detected using a
technique called weighted recency averaging, while the lo-
cal maps are merged employing the Hough transform. Sec-
tion 2 states the problem considered in this paper while
Section 3 describes the approach designed to solve the
problem. Sections 4 and 5 show the results obtained in
simulation and experimental tests, while Section 6 draws
some conclusions.

2 Problem Formulation
A mobile robot, endowed with a laser range¿nder, is sup-
posed to be correctly localized with respect to the available
environment map. Let its estimated pose at time t be de-
noted by

p̂(t) = {x̂(t), ŷ(t), θ̂(t)}. (1)

By the expression correctly localized robot we indicate a
robot that is in the position tracking state, as de¿ned in [2]
and [3].
An occupancy grid map of the environment (used in the lo-
calization algorithm to track the robot position over time)
is available to the robot. Such a map could have been man-
ually created or previously built by a SLAM algorithm.
At discrete instants k the environment changes, and con-
sequently the robot has to modify its map, to take into ac-
count the variation. We call this phase a ∆-mapping step.
We de¿ne the set of new maps collected up to time k as

M(K) = {Mk}, k = 0, . . . , K.

M0 is the initial map, obtained by the SLAM procedure.
The goal of the algorithm developed in the next section is
to provide an estimate M̂k of the map at each time step k.

3 The Approach
The architecture of the approach can be represented by sep-
arate functional blocks (as shown in Figure 1).
The ∆-Awareness block implements the technique used to
detect when a change has occurred in the map, and conse-
quently communicates to the robot that it is time to enter
the so called ∆-mapping phase.
The Store-scan block decides which scans acquired dur-
ing the ∆-mapping phase are suitable to create a local map
containing the variations.

TheAlignment block registers in a consistent way the set of
measurements frames (range scans) collected by the Store-
scan block. The approach maintains all the local frames
of data as well as the relative spatial relationships between
local frames. The adopted approach is described in [8].
TheMap Merge block merges the output of the Alignment
block at time k with the map M̂k−1.
The most relevant blocks are detailed in the next subsec-
tions.

Figure 1: The architecture of the approach.

3.1 ∆-Awareness
The ∆-Awareness block detects persistent variations in the
environment, using a technique called weighted recency
averaging, which is normally applied in problems of track-
ing non-stationary processes.
An example of application of this technique can be found
in recovering from localization failures [13], where it is
used to calculate the empirical measurement likelihood and
maintain short-term and long-term averages of this likeli-
hood, deciding when to randomly inject particles to the ¿l-
ter.
In our setting, the weighted recency averaging is employed
to recognize changes in the environment, under the hy-
pothesis that the robot is correctly localized and never kid-
napped.
In particular, we call wavg(t) the weight of the position hy-
pothesis with the highest likelihood, and we calculate the
short-term likelihood and the long-term likelihood as

wslow(t + 1) = wslow(t) + αslow(wavg(t)− wslow(t))
wfast(t + 1) = wfast(t) + αfast(wavg(t)− wfast(t))

(2)

where the parameters αslow and αfast are decay rates for
the ¿lters that estimate the long-term and short-term av-
erages. As a rule of thumb, we should choose αslow ≪

297ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

αfast, noticing that these parameters inÀuence directly
how quickly the ∆-Awareness block perceives a variation
occurred in the environment.
The wavg(t) is in general a non-stationary process, since at
least one of its parameters (e.g. the mean value) changes
over time.
In Figure 2 it is shown a comparison between the trend of
the wavg(t) over time when no modi¿cations in the map
occur (a), and when the robot passes near an area with a
variation (b). The sudden changes of wavg(t) in the latter
case allow to use such process to detect variations.
The divergence between the short-term and the long-term
average of the measurement likelihood is considered in the
computation of the following divergence ratio rd(t)

rd(t) = 1−
wfast(t)

wslow(t)
(3)

which is one of the indexes considered by the Store Scan
block to decide if a laser scan should be discarded or not,
as discussed in Subsection 3.2.

0 10 20 30 40 50 60 70
0.8

0.9

1

w
av

g(t)

(a)

0 10 20 30 40 50 60 70
0

0.5

1

t [s]

w
av

g(t)

(b)

Figure 2: Comparison between the trend of the wavg(t)
over time when no modi¿cations in the map occur (a), and
when (b) the robot passes near a variation.

3.2 Store Scan

The purpose of the Store Scan block is to select the laser
scans suitable for building the local updated sub maps.
These scans are stored in a set called S(k).
In order to maximize the probability of storing scans when
modi¿cations in the map have occurred, if rd(t) > 0 a scan
is selected with a probability given by v < rd(t), where v
is a uniformly distributed random variable U(0, 1).
Figures 3 and 4, respectively, clarify what happens when
there are no modi¿cations in the map and when a robot
perceives a variation in the environment.

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

t [s]

wavg(t)

wfast(t)

wslow(t)

rd(t)

Figure 3: Trend of wavg(t), wfast(t), wslow(t), rd(t) in
absence of modi¿cations in the environment.

0 50 100 150 200 250 300 350
í1

í0.5

0

0.5

1

t [s]

wavg(t)

wfast(t)

wslow(t)

rd(t)

Figure 4: Trend of wavg(t), wfast(t), wslow(t), rd(t) in
presence of modi¿cations in the environment.

In Figure 3 the values taken by wfast(t) are higher than
those taken by wslow(t); from (3) it follows that rd(t)
is negative (in Figure 3 it has been set to zero) and the
∆-mapping process does not begin. In Figure 4 the val-
ues assumed by wfast(t) are lower than those assumed by
wslow(t) and hence rd(t) is greater than zero.
The ∆-mapping process begins when rd(t) becomes posi-
tive for the ¿rst time, and ends when rd(t) falls again below
zero.
Unfortunately we experienced that this method suffers
from a couple of problems.
It can be observed that even if the environment does not
change, the divergence ratio may increase in speci¿c situ-
ations, such as when the rotational velocity of the robot is
greater than zero, causing the beginning of the ∆-mapping
process also when the environment has not changed.
The second problem is that even if the ∆-mapping process
has correctly begun due to a variation in the environment,
the quality of the scans acquired by the laser range¿nder
could be insuf¿cient.
The accuracy of the scans is related to the precision of the
robot pose estimation, in particular to its heading estima-
tion. An interesting example in the context of EKF-SLAM
is presented in [4], where it is claimed that a signi¿cant
source of inconsistency is to be found in heading variance
which, if large, can cause divergence in just a few updates.
In our case, scans acquired with a wrong heading may lead
to bad-aligned sub-maps. Moreover, the problem of a bad

298ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

quality of the scans can be related to the ¿rst highlighted
matter, i.e. when the robot is rotating.
In fact it frequently happens that the robot encounters map
variations while turning, hence when its rotational velocity
is greater than zero. In this situation, even if the map has
changed, some acquired scans may have a wrong heading,
and therefore they should be discarded.
The proposed solution for a proper scan discarding is dis-
cussed in the next subsection.

3.2.1 Scan discarding based on the evaluation ofNeff

The local degeneracy of the particle ¿lter algorithm is mea-
sured by the effective sample size Neff of the particle ¿lter
de¿ned as

Neff =
Ns

1 + Var(w∗t
i)

(4)

where Ns is the number of particles and w∗t
i is the true

weight. Neff cannot be exactly calculated, but an estimate
can be obtained by computing

N̂eff =
1

∑Ns

i=1(w
i
t)

2
(5)

A relation has been empirically found between the local
degeneracy of the particle ¿lter and the moments in which
the robot is turning. Three cases have been considered to
investigate such a relation. In the ¿rst one we compute the
values of Neff while the robot is going straight and some
environment changes occur. In the second one the robot
turns with a constant rotational velocity (without any envi-
ronmental modi¿cation), while in the third one it follows
the blue (not straight) path shown in Figure 5.

Figure 5: Path followed by the simulated robot to evalu-
ate Neff in the third case. On the left there is the simulated
robot and environment, on the right our graphical user in-
terface.

The results of computing Neff in the three examples are
shown in Figure 6, in blue, red and black, respectively.
The red and black plots show that the robot turning de-
creases the value of Neff, whereas the variation in the map
while the robot is not turning does not inÀuence its value.
We can thus argue that the evaluation of Neff allows us
to reject those scans acquired while the robot is turning,
which can be bad aligned with high probability.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

t [s]

N
ef

f

Figure 6: Comparison of the Neff trend.

3.3 Scan Alignment

The Scan Alignment block produces a local map perform-
ing a consistent registration of the collection of scans con-
tained in S(k). The approach maintains all the local frames
of data as well as the relative spatial relationships between
local frames, modeled as random variables and derived
from matching pairwise scans or from odometry. Then all
the spatial relations are combined using the Rmap algo-
rithm (see [1]).
The output of this block is a consistently aligned map Sk.

3.4 Map Merge

The Map Merge block receives the aligned map Sk pro-
vided by the Scan Alignment block and merges this map
with M̂k−1, which is the map the robot is currently using
for localization. The output of this merge process is M̂k.
We adopted the algorithm proposed in [6], whose theoreti-
cal foundations are brieÀy recalled in the next subsection.

3.4.1 Theoretical background about Map Merging

We assume that a grid map M is a matrix with r rows and
c columns. Each cell M(i, j) may contain three different
values, indicating whether the cell is free, occupied, or if
its status is unknown.
Given two maps M1 and M2 , the goal of map merging is
to ¿nd a rigid transformation T so that the two maps can
be overlapped. The transformation T = T (∆x, ∆y, φ) is
the combination of a rotation φ, followed by a translation
along the x and y axis of magnitude ∆x and ∆y, respec-
tively.
The overall transformation T is computed in two separate
steps. First the rotation φ is determined, and then the trans-
lations ∆x and ∆y are deduced. In order to do this, Hough
transform is applied to detect lines expressed in polar co-
ordinates (i.e. ρ and θ). Line detection is performed using
the Discretized Hough transform (DHT), that discretizes
the domain for ρ and θ, so that the DHT can therefore be
represented by a matrix with ρS rows and θS columns. In
addition it is also necessary to set a bound for ρ, while θ is
naturally bounded to [0, 2π). The DHT can be applied to
detect lines in an occupancy grid map M , by converting it

299ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

into a binary image. The conversion can be performed set-
ting all occupied cells to black, and all other cells to white,
for example. If M is a grid map, we indicate its DHT with
HTM . Given HTM we de¿ne its associated Hough Spec-
trum as the following signal:

HSM (l) =

ρS
∑

i=1

HTM (i, l)2, 1 ≤ l ≤ θS

Translations of the Hough spectra correspond to rotations
of the associated map. The computation of the circular
cross correlation gives information about how the maps
have to be rotated in order to be overlapped. Formally,
if HSM1 and HSM2 are two Hough spectra with the same
sampling period, their circular cross correlation CCM1M2

is a signal with the same sampling period de¿ned as fol-
lows:

CCM1M2 =
θS
∑

i=1

HTM1(i)HTM2(i+l), 1 ≤ l ≤ θS (6)

Local maxima in the spectra cross correlation reveal how
M2 should be rotated in order to align it with M1. The
proposed algorithm therefore extracts a set of n local max-
ima (n being a speci¿ed parameter), and returns n trans-
formations.
Given a candidate rotation φi , the corresponding transla-
tions ∆xi , ∆yi can be in principle easily determined. Let
M3 be the map obtained rotating M2 of φi , i.e.

M3 = T (0, 0, φi)M2. (7)

Translations needed to overlap M3 to M1 can be obtained
computing the bidimensional correlation in the following
way. First we compute the X-spectrum of a binary image
M , having r rows and c columns, as follows:

SXM (j) =

{
∑r

i=1 M(i, j) 1 ≤ j ≤ c
0 otherwise (8)

Similarly, the Y-spectrum of image M is de¿ned as:

SYM (j) =

{
∑c

i=1 M(i, j) 1 ≤ j ≤ r
0 otherwise (9)

Given SXM1 and SXM3, ∆xi can be easily inferred by
looking at the global maximum of the cross correlation be-
tween them, de¿ned as

CCXM1M3(τ) =
+∞
∑

l=−∞

SXM1(l + τ)SXM3(l) (10)

Similarly to the case of correlation between Hough spec-
tra, multiple local maxima may emerge when computing
the cross correlation between X-spectra. Each of the max-
ima is associated with a candidate translation to align the
two maps and can be individually tracked.

3.4.2 Map Merge Validation

We have performed an intensive test of the Map Merge
block, in order to properly set the parameters of the al-
gorithm proposed in [6] and to verify the effectiveness and
speed of the merging algorithm.
To perform the tests we have considered two different parts
of the map of Figure 7 (used also in the simulation tests).
These submaps are shown in Figure 8 (a) and (b).

Figure 7: The map used to validate the Map Merge block,
used also in the simulation tests.

(a) (b)

Figure 8: The two parts of map in Figure 7 used to validate
the Map Merge block.

For each submap we have generated every possible x trans-
lation in the range [-10;10] pixel with resolution 1 pixel,
for every x translation every possible y translation in the
range [-10;10] pixel with resolution 1 pixel, and for every
y translation every possible rotation in the range [0;360]
degrees with resolution 1 degree. To evaluate the perfor-
mances of the merging procedure, given two maps M1 and
M2 we consider the following simple acceptance index:

w(M1, M2) =

ȷ

0 if agr = 0
agr(M1,M2)

agr(M1,M2)+dis(M1,M2) if agr ̸= 0 (11)

where agr(M1, M2) is the agreement between M1 and
M2, the number of cells in M1 and M2 that are both free
or both occupied and 0 ≤ w ≤ 1. The disagreement be-
tween M1 and M2 (indicated by dis(M1,M2)) is the num-
ber of cells such that M1 is free and M2 is occupied and
vice-versa. Notice that only free or occupied cells are con-
sidered, while unknown cells are ignored.
We have considered four possible merging algorithms. The
¿rst one (MA1) is the one presented in Section 3.4.1, while
the other two are the “robust” versions of the ¿rst one.
The second one (MA2) evaluates other candidate solutions
rotating the ones computed by MA1 in the range [-0.5;0.5]
degrees with a step of 0.25 degrees. The third one (MA3)
evaluates other candidate solutions rotating again the ones

300ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

obtained by MA1 in the range [-1;1] degrees with a step of
0.25 degrees. In the fourth one (MA4) a further translation
is added. The other candidates solutions are determined ro-
tating the MA1 solution in the range [-0.25;0.25] degrees
with a step of 0.25 degrees, and adding to each rotation a
translation of +1 and -1 pixel.
The results in terms of acceptance and computation time
of the four merging algorithms are indicated in Table 1.

Methods Acceptance Computation Time [s]
MA1 0.9977 0.67
MA2 0.998 1.38
MA3 0.998 1.99
MA4 0.998 2.01

Table 1: Results of the four methods.

For each method we averaged all the acceptance indexes
obtained for each rotation (and also translation for M4).
The computation time for each method has been computed
as the average among all the single computation times for
each rotation/translation. The Map Merge validation has
been performed on a 2.5 GHz Intel c⃝ Core2 Duo platform
with 2 GB of RAM memory.
After the evaluation of the accuracy of the four proposed
methods and their computation time, we chose to use the
MA1 method in the Map Merge block, because the accep-
tance obtained is comparable with the other methods, and
the computation time is lower than the others.

4 Simulation Tests
We consider a simulated environment of a logistic area (see
Figure 7). The occupied black areas can be thought as con-
tainers or similar bulky items stored before distribution.
The dimension of the whole environment is 35×35 m, the
black areas are 10×10 m and the corridors are 5 m wide.
We assume that, when the rover is correctly localized,
a virtual fork-lift removes or adds one container every
minute.
To demonstrate the effectiveness of the proposed approach
we ¿rst provide results related to nr = 10 averaged runs,
and the ∆-mapping updating process lasts for approxi-
mately two hours each run.
We de¿ne the localization error of the robot as the
distance between the ground-truth Cartesian position
(xgt

i (t), ygt
i (t)) and its Cartesian position estimation given

by (1) as

e
ρ(t) =

p

(xgt(t) − x̂(t))2 + (ygt(t) − ŷ(t))2. (12)

We then de¿ne the average localization error over nr runs
as

ēρnr(t) =
nr

X

i=1

eρ(t)
nr

. (13)

The localization error is shown in Figure 9. The localiza-
tion error remains lower than 0.5 m, except for a period of
time where the error increases. This is due to the loss of
the localization by the rover in one of the runs. However
the robot quickly recovers correct localization.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

t [hours]

ēρ n
r
(t

)

Figure 9: Localization error of a robot in nr runs.

Table 2 shows the acceptance index (11) mediate over the
single run, along with the number of variations occurred
detected per run.
The number of detected variations in each run depends on
the path followed by the robot. In this work the robot
wanders in the environment, and there is no active mecha-
nism to ensure the detection of all the variations occurred
in the environment. Future works will be devoted to en-
hance the motion strategy. The average quality of the map
is comparable with the quality of a map obtained by a Rao-
Blackwellized SLAM process in static conditions, since in
that case the value of the index obtained is 0.98.

Run Acceptance Number of variations
R1 0.979 23
R2 0.98 30
R3 0.9695 68
R4 0.9758 77
R5 0.9728 97
R6 0.9784 47
R7 0.9804 62
R8 0.9731 200
R9 0.9681 197
R10 0.97 100

Table 2: Acceptance values and number of variations of
the nr runs.

In another test, we have performed a ∆-mapping process
lasting for approximately seven hours, for a total num-
ber of 420 variations, to check the long operativity perfor-
mance. Figure 10 shows the status of the grid map respec-
tively after few variations and after many variations. The
map shown in Figure 10 (c) contains open squares because
sometimes the robot may not be able to completely map
a variation. Moreover, the a-priori knowledge of the geo-
metric aspect of the elements inside the environment (e.g.,
the goods shape) is not used to complete the ¿nal map ob-
tained by the proposed procedure.
In Figure 11 the localization error of the simulated rover is
shown. Figure 12 shows the acceptance index (in the range
0-1 from worst to best) related to the map quality over time.
After seven hours of operation the rover localization error
remains acceptable (below 1 m) and the quality of the map
is still comparable with the quality of a map obtained by a
Rao-Blackwellized SLAM process.

301ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

(a) (b) (c)

Figure 10: The initial map (a), the map after few variations
(b), and the map at the endo of the ∆-mapping process.

1 2 3 4 5 6 7
0

0.5

1

1.5

t [hours]

eρ
(t

)

Figure 11: The localization error in the long operativity
test.

0 1 2 3 4 5 6 7
0.97

0.975

0.98

0.985

0.99

0.995

1

t [hours]

ac
ce

pt
an

ce
 in

de
x

Figure 12: The trend of the quality of the map over time.

5 Experimental Tests
We have also performed some experiments in a real en-
vironment using a Pioneer P3DX robot endowed with a
SICK LMS200 laser range¿nder and connected with an
Acer AspireOne with 512 MB of RAM memory and pow-
ered by an Intel Atom 1.6 GHz. To perform the exper-
iments, ¿rst we have placed some simulated goods in a
10 × 4 m hall, each obstacle being 0.6 × 1.2 m and made

of 6 boxes of 0.3 × 0.4 m and we have performed a clas-
sical Rao-Blackwellized SLAM process to obtain the map
of the environment.
Then, to test our ∆-mapping approach, we have ¿rst re-
moved 4 boxes from one of the obstacles and placed them
again in the same position as before, letting the robot per-
form ∆-mapping phases.
The map produced by the SLAM process is shown in Fig-
ure 5 (a) along with a snapshot of the environment in (b),
acquired while the SLAM process was performed. In (c)
and (e) of the same Figure the two maps resulting from two
∆-mapping processes are shown, along with the status of
the obstacles in (d) and (f).
By visually inspecting the maps shown in Figure 5 (c)
and (e) we can notice the effectiveness of the ∆-mapping
phases, because the presence and absence obstacles has
been mapped, and the quality of the maps obtained is sat-
isfactory.

(a) (b)

(c) (d)

(e) (f)

Figure 13: State of the map and snapshots of the environ-
ment in the real test.

The proposed approach is also light from a computational
point of view (especially if compared to a particle ¿lter
based SLAM approach), because it limits the demand for
computational resource only to the ∆-mapping phases. In
Figure 14 the peaks of cpu usage are visible in the upper
plot, while the peaks of memory occupation are shown in
the lower plot. In particular the memory required by the
application does not exceed 92 MB, and only for a short
period of time. The lightness of the approach enables its
use in those applications where other services have to be

302ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

carried out in parallel with the ∆-mapping process.

0 0.5 1 1.5 2 2.5
0

50

100

cp
u

us
ag

e
[p

er
ce

nt
ag

e]

0 0.5 1 1.5 2 2.5
0

50

100

t [min]

m
em

or
y

oc
cu

pa
tio

n
[M

B
]

Figure 14: Cpu usage (upper plot) and memory occupa-
tion (lower plot) in the real experiment.

6 Conclusions
In this paper we have proposed a methodology called ∆-
mapping, which is able to perform map updating from an
initial map when dynamical variations occur in the envi-
ronment. This methodology enables robots to detect varia-
tions, to generate a local map containing only the persistent
variations, and ¿nally to merge the local map with the one
used for localization. The variations in the environment are
detected using a technique called weighted recency aver-
aging, while the local maps are merged employing a tech-
nique based on the Hough transform. The approach is suit-
able for applications such as logistic applications, where
a long-term operativity is required and the algorithm per-
forming the map update has to be computationally light
and to use limited memory, to allow concurrent execution
of other services. Future works will be devoted to the ex-
tention of the ∆-mapping process to a multirobot team, and
to develop team coordination strategies that actively search
modi¿cations in the map.

References
[1] Rmap. Website. http://www-

robotics.usc.edu/ ahoward/pmap/rmap_8h.html.

[2] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi.
Switching multirobot collaborative localization in
symmetrical environments. In IEEE International
Conference on Intelligent RObots Systems (IROS

2008), 2nd Workshop on Planning, Perception and
Navigation for Intelligent Vehicles (PPNIV), 2008.

[3] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi.
Three state multirobot collaborative localization in
symmetrical environments. In Proceedings of the 9th
Conference on Autonomous Robot Systems and Com-
petitions, pages 1–6, 7th May, 2009.

[4] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and
E. Nebot. Consistency of the ekf-slam algorithm.
pages 3562 –3568, oct. 2006.

[5] Peter Biber and Tom Duckett. Dynamic maps for
long-term operation of mobile service robots. In In
Proc. of Robotics: Science and Systems (RSS, 2005.

[6] Stefano Carpin. Fast and accurate map merging for
multi-robot systems. Auton. Robots, 25(3):305–316,
2008.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improved
techniques for grid mapping with rao-blackwellized
particle ¿lters. Robotics, IEEE Transactions on,
23(1):34–46, Feb. 2007.

[8] F. Lu and E. Milios. Globally consistent range scan
alignment for environment mapping. Autonomous
Robots, 4:333–349, 1997.

[9] Adam Milstein. Dynamic maps in monte carlo local-
ization. In Canadian Conference on AI, pages 1–12,
2005.

[10] Luis Moreno, Santiago Garrido, Dolores Blanco, and
M. Luisa Munoz. Differential evolution solution to
the slam problem. Robotics and Autonomous Sys-
tems, 57(4):441 – 450, 2009.

[11] L.M. Paz, J.D. Tardos, and J. Neira. Divide and con-
quer: Ekf slam in o(n). Robotics, IEEE Transactions
on, 24(5):1107–1120, Oct. 2008.

[12] Y. Rachlin, J.M. Dolan, and P. Khosla. Ef¿cient map-
ping through exploitation of spatial dependencies. In
Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, pages
3117–3122, Aug. 2005.

[13] S. Thrun, W.Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, 2005.

[14] N. A. Vlassis, G. Papakonstantinou, and P. Tsanakas.
Dynamic sensory probabilistic maps for mobile robot
localization. In In Proc. IROS’98, IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pages 718–
723, 1998.

303ISBN 978-3-8007-3273-9
© VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

