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Abstract— This paper addresses and solves the problem of
multirobot collaborative localization in highly symmetrical 2D
environments. Symmetrical environments can be encountered
in logistic application scenarios, where a team of rovers moves
along several parallel corridors in a large surface, to perform
surveillance and monitoring tasks. Because of the environment
symmetry, current algorithms fail to provide a correct estimate
of the position and orientation of the rover, if its initial position
is not known, no specific landmark is introduced, and no
absolute information (e.g., GPS) is available: the rover can
estimate its position with respect to the walls of the corridor,
but it could not determine in which corridor it is actually
moving. The proposed algorithm is based upon a particle
filter cooperative Montecarlo Localization (MCL), as in [2],
and implements a two-stage procedure that guarantees global
localization as well as position tracking of each rover in a team.
The simulation tests, which investigate different numbers of
involved rovers, their initial positions, and some possible critical
situations, show how the proposed solution can lead to the global
localization of each rover, with a precision sufficient to be used
as starting point for the subsequent rover tracking.

I. I NTRODUCTION

The multirobot case is one of the most challenging and
promising areas in the current and future mobile robotics
research, since a coordinated team of rovers can be suc-
cessfully employed in various application scenarios, e.g., for
surveillance and monitoring tasks in different fields.

Independently of the particular application, the correct
rover localization is always required and it consequently
constitutes one of the most fundamental problems in mobile
robotics: [15] offers a comprehensive study of such a prob-
lem. The multirobot case potentially gives some interesting
advantages, since the accuracy of the rovers position esti-
mates can be improved by a cooperative localization, even
if communication and data sharing problems must be taken
into account. The most common approaches are based on
Extended Kalman Filters (EKF) methods or on Monte Carlo
Localization (MCL) methods. In the EKF approaches (see
e.g., [5], [6], [8], [9], [11], [13]) the data association prob-
lem is generally solved by using multi modal distributions,
instead of a single Gaussian one, to approximate the position
probability distribution, sometimes including iterations that
propagate also an approximation of the posterior marginal
densities of the unknown variances. In the MCL methods
(see e.g., [2], [4], [10], [12]) an arbitrary posterior probability
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distribution is considered by using particle filters. Coop-
erative localization approaches based on robust estimation
techniques, in which unknown but bounded error models
are employed for the sensor measurements, have also been
proposed, e.g., in [7], [14].

Two sub-problems can be distinguished within the local-
ization framework:position trackingandglobal localization.
In the first one, the rover pose must be iteratively estimated
starting from an initial condition known with a given un-
certainty, while in the second one (the most challenging
in general) the correct global rover position with respect
to the environment map must be determined without any
information about its initial value, as well as starting from
a completely wrong estimation of its initial pose as in the
so-calledkidnapped robotproblem.

Many works available in literature use multirobot and/or
mutual localization to improve the quality of the self-
localization results that each single rover could achieve on
the basis of its own sensors only, implicitly assuming that
the information provided by such sensors would be sufficient
to obtain amacroscopicallycorrect global localization, even
if not precise. Such an assumption does not hold when the
environment in which the rovers are moving is completely
symmetrical: in this case a correct global self-localization
cannot be performed by the single rover without any external
help.

Symmetrical environments can be encountered quite easily
in some application scenarios, like the one considered in this
paper, which deals with a team of rovers moving in a large
logistic space to perform surveillance and monitoring tasks.
The considered logistic space is intended as an indoor or
outdoor area, where logistic and transport societies receive
and store large quantities of goods, mainly bulky ones, as
containers, cars, and other similar items. In order to achieve
an efficient occupancy of the area and facilitate the transport
operations, the free corridors of the area among the stored
goods form a regular grid, as in Figure 4. The resulting
symmetry of the environment map precludes the correct
global self-localization of each rover, if its initial position is
not known, no specific landmark is introduced to distinguish
each corridor, and no external information (like GPS) is
available or exchanged with the other rovers: by using only
its own sensors (odometry, laser scanner, sonar, etc.), each
rover could well estimate its position with respect to the walls
of the corridor, but it could not determine in which corridor
it is actually moving.

This paper investigates the possibility of using a coop-
erative MCL approach (as in [2]) to solve such a global

IROS 2008 2nd Workshop: Planning, Perception and Navigation for Intelligent Vehicles



localization problem, without forcing artificial asymmetries
in the environment. The proposed solution does not use any
external information (e.g., GPS), that could be unavailable
in some indoor areas, but occasional noisy measurements
coming from a compass sensor are sufficient to resolve
position ambiguity due to symmetry. The reported simulation
tests, which investigate different cases with respect to the
number of involved rovers, their initial positions, and some
possible critical situations, show how the proposed solution
can lead to the global localization of each rover, with a
precision sufficient to be used as starting point for the
subsequent rover tracking, within a two-stage localization
procedure.

The paper is organized as follows: Section II describes the
proposed localization algorithm calledSMCL ; Section III is
devoted to the tests designed and performed to demonstrate
the effectiveness of the proposed algorithm; Section IV draws
some final conclusions and discusses future works.

II. T HE SWITCHING MULTIROBOT COLLABORATIVE

LOCALIZATION (SMCL)

A. Preliminaries

The Switching Multirobot Collaborative Localizational-
gorithm (SMCL ) allows each member of a group of rovers
moving in a highly symmetrical area (e.g., a large logistic
space) to accurately localize itself and to correctly trackits
position over time. TheSMCL algorithm correctly operates
for rovers endowed with at least sonar range sensors, a
monocular or an omnivision camera and a compass sensor.
The camera is used to detect the positions of other rovers
when they are in the field of view; the measurement precision
may be improved using a laser range finder if available. A
binary occupancy grid map of the environment is assumed
to be available.

The algorithm first performsglobal localizationover the
map in a decentralized way, exploiting the position estimates
of the other rovers of the group, then realizes when the local-
ization error estimate is lower than a given threshold, causing
to switch to a pureposition trackingalgorithm. Finally, the
algorithm allows rovers to detect a sudden increase in the
localization error, due for instance to kidnapping or failures
in proprioceptive sensors (e.g., wheel encoders rupture).In
this case the algorithm switches again toglobal localization.

Let R = {ri : i = 1, . . . , NR} be the set of rovers
deployed in the area; witht we indicate the time variable
that clocks the whole localization algorithm. Withdi(t) we
indicate data coming form thei-th robot proprioceptive and
exteroceptive sensors at timet. In particular we have that

di(t) =

{

oi(t) if proprioceptive measurement
zi(t) if exteroceptive measurement

The proprioceptive measurementoi(t) is used to perform
dead-reckoning, while the exteroceptive measurementzi(t)
contains the range measurements given by the range sensors.

Each rover is able (a) to measure the positions of the other
rovers in the field of view of its vision sensor in its local
reference frame, concurrently with theSMCL algorithm, (b)

to transform the measurements in a global reference frame
common to all rovers, and (c) to finally send these values to
the detected rovers via a wireless link.

Let k denote a time instant at which the position of the
i-th rover is detected by a set of roversRi(k) ⊆ R, (|Ri(k)|
being its cardinality). The rovers belonging toRi(k) send
their measurements to thei-th rover, which collects them in
the following vector:

hi(k) =







x̂i
1(k), ŷi

1(k)
...

x̂
|Ri(k)|
i (k), ŷ

|Ri(k)|
i (k)






. (1)

Each row of (1) contains an hypothesis on the position of
the i-th rover expressed in Cartesian global coordinates.

The set of all the measurements received by thei-th rover
up to timek is then defined asHk

i = {hi(1), . . . , hi(k)}.

B. The algorithm

We now describe the core of theSMCL algorithm, which
runs onboard each rover and it is outlined in Algorithm 1.

Input : χt−1, di(t), Ri(k), Hk
i , Nmin, Nmax, Nhyp, m

Output : Φi(t), φbest
i (t)

if flag = 1 then Position Tracking1

[χt,µk,l] = position tracking (di(t), χt−1, hi(k), l)2

[Φi(t), φbest
i (t)]= DT clustering(χt)3

if l > npt then4

[µk] = loc perf(φbest
i (t), hi(k))5

if µk ≥ µthu then6
flag = 0; l = 07

end8
9

end10
11

elseGlobal Localization12
initialize χt;13
if di(t) = oi(t) then14

pi(t) = samplemotion model(di(t), pi(t − 1));15
else if di(t) = zi(t) then16

wi(t) = measurementmodel(di(t), pi(t), m)17

χ̄t = χ̄t + 〈pi(t), wi(t)〉18
if Ri(k) = ∅ then19

χt = KLD 1(χ̄t, Nmin, Nmax)20

[Φi(t), φbest
i (t)] = DT clustering(χt) ;21

else22
l = l + 1;23

χt = KLD 2(χ̄t, Nmin, N ′
max, Nhyp, hi(k))24

[Φi(t), φbest
i (t)] = DT clustering(χt)25

if l > ngl then26

[µk] = loc perf(φbest
i (t), Hk

i )27
if µk ≤ µthd then28

flag = 1; l = 0;29
end30

31
end32

33
end34

35
end36

37
end38
Algorithm 1 : The SMCL algorithm in pseudocode



The algorithm is basically organized in two stages. The
first stage is active when the rover performsglobal localiza-
tion (lines 12-38), while the second stage is active when
the rover performsposition tracking (lines 1-10). At the
beginning it always enters the first stage, and switches to
the second stage when the localization performances are
sufficiently accurate. Similarly, when the rover is inposition
tracking, it continues to monitor its localization perfor-
mances. In case of localization performance degradation, the
algorithm switches again toglobal localization.
Both the stages are based on particle filters [15]; observing
the global localizationpseudo-code in Algorithm 1, it can
be noticed the typical prediction phase at line 15 and the
update phase at lines 17-18. The prediction phase computes
the vectorpi(t) containing the predicted pose (in terms of
global coordinates{x, y, θ}) for each particle, while the
purpose of the update phase is twofold. It gives the vector
wi(t) containing the importance factors for each particle,
and it verifies if vectorhi(k) contains position estimates
outside the map. If this is the case, such estimates are
weighted using a Bivariate Normal Distribution. Then, at
line 19, the algorithm verifies if it has received a vector
of measurementshi(k) from other rovers of the setRi(k)
at time k. If Ri(k) is empty, a classicKullaback-Leibler
Divergence(KLD) Resampling occurs (see [15]);Nmin and
Nmax initialized at line 13 are respectively the lower and
upper bound of the number of particlesNkld employed in
the resampling algorithm. If insteadRi(k) is not empty, a
modified version of the KLD Resampling has been imple-
mented (line 24). The idea is to exploit the relative Cartesian
position measurements (contained in vectorhi(k)) that the
i-th rover receives from the other rovers ofRi(k) to remove
the ambiguity on localization due to the symmetry of the
environment. To achieve this goal, the algorithm distributes
a subsetN ′

kld of the resampled particle setNkld around the
elements of the vectorhi(k). A new boundN ′

max on the
number of particlesNkld is set as:

N ′
max = Nmax − Nhyp,

where Nhyp is the minimum number of particles that can
be Gaussianly distributed around the elements ofhi(k), and
henceN ′

kld ≥ Nhyp. Therefore it holds thatNmin ≤ Nkld ≤
N ′

max.
After the resampling phase, a classicDensity-Treeclustering
[2] (lines 3, 21, 25) is always performed, that provides a
vector of hypothesesΦi(t) on the position of thei-th rover
and the best hypothesisφbest(t). The vector of hypotheses
is defined as

Φi(t) =







p1
i (t),Σ

1
i (t),W

1
i (t)

...

p
|Φi(t)|
i (t),Σ

|Φi(t)|
i (t),W

|Φi(t)|
i (t)






,

where|Φi(t)| is the cardinality ofΦi(t), Σj
i are the covari-

ance matrices relative to the the posesp
j
i (t), and finally

W
j
i (t) are the weights associated to each hypothesis, rep-

resenting their level of confidence, withj = 1, . . . , |Φi(t)|.

The best hypothesis at timet is defined as

φbest
i (t) = max

W
j

i

(Φi(t)) = [pbest
i (t),Σbest

i (t),W best
i (t)] (2)

Switching between position tracking and global localization
is based on the followingaccordancefunction:

µk =

k
∑

q=k−n

|Ri(q)|
∑

j=1

√

(x̂j
i (q) − x̂best

i (t))2 + (ŷj
i (q) − ŷbest

i (t))2

n|Ri(q)|
,

(3)
wheren is the length of the sliding window used to compute
the average of (3), and it is equal tongl if the rover
is in global localization and to npt if the rover is in
position tracking. The inner summation of (3) averages the
distances among the elements ofhi(k) and the best position
hypotheses of thei-th rover. The outer summation of (3)
performs a moving average of lengthn on the results of
the inner summation. Thereforeµk measures the accordance
between the actual belief on the position of thei-th rover
and the average of the beliefs that the other rovers have on
its position at timek.

When µk is lower than a certain thresholdµthd (empiri-
cally determined) the algorithm switches toposition tracking.
This phase is aimed to track the position of the rover over
time, and it is implemented in a classic way (see [15]).µk

is computed also during the position tracking phase: ifµk

becomes greater than a given thresholdµthu, the algorithm
switches again toglobal localization.

III. S IMULATION TESTS AND RESULTS

In this section we demonstrate the effectiveness of the pro-
posedSMCL algorithm, carrying out a series of localization
experiments in simulation.
The software used to simulate the rovers and their envi-
ronment is calledMobileSim [1]. It is based on theStage
library [3], and it simulates MobileRobots platforms. We
perform experiments with a team of simulated Pioneer 3 DX
rovers, endowed with sonar sensors. The simulator embeds a
model of the behavior of sonar range sensors, provides rover
odometry pose estimation with cumulative error, and allows
multiple rovers simulation.
The simulator has also been improved by adding a simple
simulated vision sensor, a compass sensor, and the support
for communication among rovers.
We consider a simulated environment of a large logistic area
(see Figure 4). The occupied black areas can be thought
to represent containers or similar bulky items stored by
transport societies before distribution. The dimension ofthe
whole environment is80×65 m, the black areas are20×10
m and the corridors are5 m wide.
The symmetry of the environment makes global localization
a really difficult task, which the proposedSMCL algorithm
successfully performs, as the following experiments show in
different situations.



A. Experiment 1

The first experiment demonstrates the trend of the local-
ization error for a team of rovers moving in a symmetrical
environment and communicating their relative positions and
absolute heading - if available - when they are in the field
of view. We define the following quantities:

e
ρ
i (t) =

√

(xgt
i (t) − x̂best

i (t))2 + (ygt
i (t) − ŷbest

i (t))2 (4)

e
θ
i (t) = θ

gt
i (t) − θ̂

best
i (t) (5)

where e
ρ
i (t) is the distance between the ground-truth

Cartesian position of thei-th rover (xgt
i (t), ygt

i (t)) and its
Cartesian position estimation given by the best hypothesis,
while eθ

i (t) is the difference between the real heading and the
actual heading of the best hypothesis. The pose informations
of the best hypothesis are given bypbest

i (t) and can be
extracted byφbest

i (t), defined in (2).
The experiment consists in initializing randomly the pose
of NR = 6 rovers in free areas of the map, let them
move according to a simple obstacle avoidance behavior,
and monitoring the localization errorseρ

i (t) and eθ
i (t) for

i = 1, . . . , NR up to t = 1600 s. The results are shown
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Fig. 1. Experiment 1: localization errors.

in Figure 1. In this experiment all the rovers are correctly
localized after approximately 220 seconds, with a remaining
position error approximately equal to 30 cm. As soon as
global localization occurs, theSMCL algorithm running
on each rover switches toposition tracking. This can be
noticed observing the plots relative to the roverp3dx2, whose
position and heading errors suddenly decrease at the same
time.

B. Experiment 2

In this experiment we analyze the robustness of the
SMCL algorithm with respect to random variations in
the initial position of the rovers. We consider again a
team of NR = 6 rovers and we repeat 50 times the
experiment described in the subsection III-A, each time
setting randomly the initial position of the rovers. Since we

are interested in evaluating the average localization error
among the repetitions of the experiments, we defineē

ρ
i (t) as

the average ofeρ
i (t) for the i-th rover over 50 realizations.

The results are shown in Figure 2. The localization error
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Fig. 2. Experiment 2: average localization errors.

e
ρ
i (t), i = 1, . . . , NR decreases approximately linearly for

all the rovers; the remaining error of about 5 m would
further decrease extending the simulation time up to
1600s, as in Experiment 1. TheSMCL algorithm is not
susceptible to variations in the initial positions of the rovers,
even if the environment is symmetrical. This fact has an
important impact on the application side, in particular when
considering robotic applications in logistic spaces, since the
algorithm does not require any particular initial formation
of the rovers, avoiding any human intervention to initially
place the rovers in a specific area of interest.

C. Experiment 3

In this experiment the same situation of Experiment 1 is
considered, but at a certain time a correctly localized rover
of the team is kidnapped and moved to another part of
the logistic area. This experiment models a set of realistic
situations that may lead a rover to lose its localization
informations (e.g., due to intermittent failures in the wheels
encoders). In Figure 3 the plots ofe

ρ
i (t) andeθ

i (t) are shown
for i = 1, . . . , NR, while Figure 4 reports a sequence of
images representing what happens in simulation; the rover
p3dx2 is kidnapped at approximatelyt = 2000 s (Figure 4
(b)), and theSMCL algorithm localizes again the rover at
t = 2150 s (Figure 4 (g)). Notice that the incorrect position
information of the roverp3dx2 influences for a while the
roverp3dx5, as soon asp3dx2seesp3dx5and communicates
its incorrect position hypotheses. Howeverp3dx5 is able to
quickly recover correct localization.

D. Experiment 4

This final experiment has been designed to understand
how localization performance of theSMCL algorithm is
affected by the number of rovers in the team, both in terms
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Fig. 3. Experiment 3: localization errors.

of Cartesian position error and of time required to switch to
position tracking.
We define the average position error among theNR rovers
of the team as:

E
ρ
NR

(t) =

NR
∑

i=1

e
ρ
i (t)

NR

(6)

wheree
ρ
i (t) is the average for thei-th rover over 20 realiza-

tions. The results forNR = 2, 3, 6, 9 are reported in Figure
5. It can be clearly seen that two rovers are not sufficient
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Fig. 5. Experiment 4: average localization errors.

to resolve the ambiguity in localization, but as soon as
three rovers are employed, the localization error goes below
10 m after nearly 500 s; increasing the number of rovers
up to six and nine strongly improves the performances. In
particular with 9 rovers, on average the error becomes lower



than about 0.5-0.6 m aftert = 450 s (see Figure 5). This
is particularly important in practical applications, since the
localization error decreases and the path planning algorithms
become more effective for the rovers relying only on their
position estimations, thus allowing rovers to accomplish in a
more reliable way the task assigned (e.g., handling hazardous
events collaboratively).

The statistics relative to the first switching time toposition
trackingare reported in Figure 6, which shows for each group
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Fig. 6. Experiment 4: switching toposition trackingtimes for groups of
rovers of increasing cardinality.

of NR rovers the minimum first switching time toposition
tracking among all the realizations of all the rovers (blue
column), the average first switching time (green column) and
the maximum first switching time (red column). Observing
in particular the green columns we can state thatglobal
localizationon average speeds up when the number of rovers
is increased.

IV. CONCLUSIONS

The paper has shown how the problem of correct local-
ization of rovers can be successfully solved by the proposed
SMCL algorithm, even in a highly symmetrical environment.
Thanks to the cooperative action of all the rovers of the team,
the approach allows the avoidance of anyad hocintervention
to force artificial asymmetries in the environment, and/or
the use of coded landmarks to distinguish different regions
of the area. The proposed solution can then be usefully
adopted in practical applications each time a team of vehicles
must autonomously move in an area characterized by a
regular grid of corridors or streets. The robustness of the
SMCL approach with respect to the initial position of the
rovers is an important advantage in practice, since it lets
the initial formation of the team be completely arbitrary.
Moreover, the automatic switch from position tracking to
global localization prevents the occurrence of macroscopical
errors, due to temporary failures or rover kidnapping. Finally,
it is worth noticing that, even if the performances become
better as the number of rovers increases, the tests show that

a team of only six rovers can perform the localization task
with acceptable results.

Future works will include experimental tests, to confirm
in practice the effectiveness of the proposed approach, which
has been demonstrated in this paper only by means of
simulation tests.
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