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Abstract—The paper presents a method aiming at improving the reli-
ability of Simultaneous Localization And Mapping (SLAM) approaches
based on vision systems. Classical SLAM approaches treat camera
capturing time as negligible, and the recorded frames as sharp and
well-defined, but this hypothesis does not hold true when the camera is
moving too fast. In such cases, in fact, frames may be severely degraded
by motion blur, making features matching task a difficult operation. The
method here presented is based on a novel approach that combines the
benefits of a fully probabilistic SLAM algorithm with the basic ideas
behind modern motion blur handling algorithms. Whereby the Kalman
Filter, the new approach predicts the best possible blur Point Spread
Function (PSF) for each feature and performs matching using also this
information.

Index Terms—Motion blur, Kernel estimation, Visual tracking, Active
vision, Monocular SLAM.

[. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) represents one
of the most important and interesting problems in the field of robotic
navigation, see [1, chap. 10]. Using SLAM approaches, mobile
robots equipped with various sensors are able to build maps of the
surrounding environment and, at the same time, to localize themselves
in that environment.

Classical SLAM approaches rely on well-known technologies
related to robot navigation; for example, laser scanner sensors are
very often used to map the environment. However, during the last
years, alternative solutions using cheaper and simpler visual sensors
have been proposed. This evolution was mainly due to the visual
system lower prizes and to the increased computation capabilities of
modern computers.

These new approaches to SLAM are intended for low-cost and
small systems that may rely only on very limited hardware, such as
smartphones. For this reason several solutions have been proposed to
reduce and simplify data processing, as in [2].

In computer vision, the most similar approach to SLAM is the
Structure from Motion (SfM) problem, used in [3]. It allows recon-
structing both camera movements and the scene by off-line processing
the video stream; moreover, it can use a large number of robust
features detected in the scene at every frame and match them frame
by frame. The most important limitation in SfM algorithms is the
fact that they do not assume simple and small camera displacements
over two sequential frames, while they consider camera point of view
independently in each frame. In other word, the task of features
matching is always done using very robust features that require
sophisticated hardware resources with high computational capabilities
to be computed. For this reason, this approach is not suitable for
embedded and low-cost devices.

Davidson at al. in [4] have developed, in the last years, a very
efficient SLAM algorithm based on a single camera and the Extended
Kalman Filter (EKF) algorithm. Their work is based on probabilistic
robotics navigation approaches, and they take care of efficiency
especially when building maps and matching features, operations that

can be done in real time. The most significant innovations introduced
in Davidson’s approach are (i) the construction of a sparse but
meaningful map of the environment to reduce memory, and (ii) the
processing of resources in order to use knowledge of the camera
motion predicted by the EKF. In such a way, it is possible to reduce
features matching regions. Especially with regards to this second
point, the active matching approach [5, 6] was proposed to speed
up the features matching phase in the algorithm.

While Davidson’s and related work deals in particular with the
algorithmic part of the problem, in terms of EKF development,
features matching, etc., they all make an implicit assumption on the
vision device. In all these approaches, in fact, the frame capturing
time is considered negligible with respect to the camera motion.
This assumption holds well only when the camera itself is moving
slowly. On the other hand, it can cause major issues in features
matching when the camera is moving with a sustained speed, because
recorded frames may be blurred. Classical SLAM approaches cannot
be properly applied on blurred frames, since features upon them will
not be recognizable and trackable. This represents a problem because
mobile robots may totally lose the orientation, and so the possibility
of building a map of their surrounding environment, even just failing
the feature matching task in two consecutive frames. Knowing that,
it is crucial to avoid as much as possible the disastrous effects of
motion blur on SLAM algorithms.

Aim of this paper is to apply results of computer vision coming
from deblurring theory to extend the Mono-SLAM algorithm in case
of high speed motion of the camera.

The paper is organized as follows: Section II presents an overview
about the Mono-SLAM algorithm and problems related to blur,
Section III discusses related works, Section IV introduces the problem
from a theoretical point of view, Section V presents the proposed
solution, Section VI discusses the obtained experimental results and
Section VII presents the conclusions and possible future works.

II. MONO-SLAM AND DEBLURRING: AN OVERVIEW

A. Mono-SLAM

Mono-SLAM is an algorithm proposed by Davidson at al. in [4]
which is one of the most relevant solution to the SLAM problem
using monocular vision systems.

As in classical SLAM approaches based on laser scanner sensors,
the robot pose is described as a stochastic variable with Gaussian
distribution, while the map of the environment is sparse. The environ-
ment is described by means of a limited set of “features” { f,}, i.e.,
measurable geometrical entities. Examples are points (as in classical
Mono-SLAM) or lines (as in [7]). Features are described as stochastic
variables, as well.

The system state ft,, identified by the robot pose and the map, is
represented at any instant ¢ = kAt, where At is the camera frame-



rate, as a stochastic variable with Gaussian distribution

By ~ N(py, i), M

having mean g, and covariance Xj.
The state vector encapsulates the information of both camera and
world state
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Information concerning the camera motion at any instant is en-
coded in the vector x; built as

T
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where the vector = and the quaternion q represent the pose of the
camera reference frame C while vectors v and w are the linear and
angular speed of C with respect to the world reference frame W.

The function used to predict the evolution of the camera state is
given by
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where quat ((wx + Q) At) is the quaternion corresponding to the
rotation (wy + 2) At in axis-angle representation while V', and
€, are the noise vectors affecting respectively linear and angular
speed. Features are consider static so they do not need a prediction
model. For more information about the algorithm, please refer to [4,
8, 91.

B. Blur handling

The problem of restoring a blurred image has long been a chal-
lenging problem in digital imaging. It has been studied in depth
from several points of view; a simple and quick research over the
literature reveals that many studies have been done on this argument
and hundreds of papers have been written during the last four decades
(for instance [10], [11], [12]). Several studies have focused on the task
of recovering a latent image starting from an input motion blurred
one. Very often, authors have modelled the task as a deconvolution
process. This simplification holds on when the blur is considered
spatially invariant (or shift-invariant), meaning that every point in
the original image spreads out the same way in forming the blurry
image. A commonly used notation is the following one ([13]):

f=g*p+n ®)

where * is the discrete two dimensional convolution operator, g is
the original image to recover (i.e., the one that would have been
observed if no blur or noise occurred), f is the observed blurry and
noisy image, p is the blur kernel (or Point Spread Function, PSF),
and n is the noise. It is common to model n as a Poisson or white
Gaussian noise, uncorrelated with the true image g, although this
consideration does not always hold true [14].

The problem of recovering the latent image g from (5) is well
known to be ill-conditioned, as even small variances in the modelled
kernel p leads to errors in the observed output f. The introduction
of an error Ap will cause the (5) to be reformulated as

f=g*p+gxAp+n, (6)

thanks to the linearity of the convolution operator. In some cases,
the contribution of g * Ap is not negligible, mainly if high quality
outcomes are expected from the deblurring process.

However, errors in blur kernel estimation may be drastically
reduced if reliable information is deducible from the context. For
example, p can be calculated with high precision if it is well known
how, and how fast, the camera is moving. Moreover, if the camera is
equipped with an high quality sensor, the noise components directly
related with the camera (e.g., shot and random noise) are drastically
reduced, while the environmental components of n can be managed
by an appropriate pre-processing phase.

III. RELATED WORKS

This paper relates to the literature on both Mono-SLAM and blur
handling. The amount of works produced in the last four decades on
both these topics is too wide to be summarized here. So, this small
analysis about the reference state-of-the-art only addresses works
directly related to blur handling approaches used to somehow improve
and ease SLAM tasks using visual systems.

The approach discussed in [15] refers to handling motion blur in
SLAM. It works by deblurring every video frame using estimations
about camera movements derived from 3-D point structures recon-
structed by SLAM. In such a way, authors state that SLAM and
deblurring are carried out simultaneously, and improve each other’s
results. Even if authors use the same model of blur and a similar way
of estimating its parameters as it is done in this paper, their approach
relies on very complex and time-consuming operations, required to
deblur whole images.

The approach proposed by Lee et al. presents some limitations
that the proposed method overcomes: it may worsen the results of
the localization task when wide camera movements are considered
(or even when there is no blur at all); moreover, to fulfill real-
time constraints, it must use two different threads for mapping
and localization and GPU-based acceleration for the operations of
deconvolution.

In [16] the problem of tracking features in presence of motion blur
is addressed. Authors model motion blur as a Gaussian convolution
process. After estimating blur parameters, the template image is
convolved and so blurred to estimate the real shape of the features to
track. Performances and reliability of this approach may be improved
by using derivatives and considerations about camera shutter timing,
as in [17]. While these approaches present some similarities with
the algorithm here presented, they simply solve the task of features
tracking. SLAM is a more complicated problem, as it uses features
tracking to build maps of unknown environments and to contempo-
raneously identify camera poses.

IV. THE PROPOSAL: BLURRING CORRECTION APPLIED TO
MoNo-SLAM

To track features within a group of images (e.g., frames of a video
stream), Mono-SLAM algorithms compare pixels with one (or more)
patch, and matches, if found, are highlighted. However, in some
cases, camera movements may be so pronounced, and so it would
be hard for any classifier to recognize a feature even if it is known,
with a reasonable uncertainty, where the feature itself is located. This
problem is caused by motion blurring. To give an example, imagine
that the feature to be recognized is represented by a point, e.g., a star
in the sky as in figure (1a), and the input of the SLAM algorithm is
captured by a camera translating very fast. In this case, the illusory
movement of the considered scene will be too large even if the camera
is recording with a high temporal resolution (i.e., the shutter time is
small). So, it is probable for the expected point to be actually recorded
as it were a straight line, as in figure (1b). In such a case, it will be
impossible to recognize it.



Classical and related works in the field of robotic SLAM always
consider negligible the shutter time and frames to be tracked as
perfectly on focus. The main contribution of the novel approach
here proposed is to overcome this limitation, thus allowing an easy
identification of blurred features.

/

(a) Original image

(b) Blurred image

Figure 1: Sharp (a) and blurred (b) version of a star in the sky.

One possible approach to solve the motion blurring problem related
to Mono-SLAM could be to pre-process each recorded frame by a
deblurring filter, to recover the real latent image behind it. After
that, it could be possible to identify and match features even using
regular and sharp patches. However, this approach will be overly time
consuming, while Mono-SLAM algorithm is required to fulfil real-
time constraints. In addition, obtained results may be unacceptable,
since real blur effects due to camera movements (or shake) may
hardly be perfectly modelled. Similar considerations hold on even
if considering narrowing the deblur problem to the regions in the
frame in which features are expected to be found.

In this paper, problems related to blur effect are addressed from
a novel point of view. In fact, they have been studied in order to
ease the task of Mono-SLAM, and at the same time improving its
reliability. Main purpose of Mono-SLAM is determining the position
and orientation of the camera by analysing images captured by
it. Taking this into account, the approach presented in this paper
proposes to blur the patches used to recognize features, in order to
line up observed features and their expected appearance. This novel
approach presents various advantages:

« considered patches are very small and in such tight spaces the
hypothesis of spatial-invariance can be applied without loss of
generality;

« the operation of convolution modelled by (5) can be performed
very quickly;

« information about rotational and translational speed given by the
EKF are used to deduce the PSF, and so to calculate the expected
feature shape through a simple convolution — in the same way
as it is expressed in (5).

A. Blur kernel prediction

To predict the kernel used to blur (when needed) patches, the
following assumption have been made: (i) the camera capturing time
T is constant and known, (ii) the blur kernel is linear. This second
hypothesis is perfectly suitable for small patches (e.g., 21 x 21 pixels
as in the experiments presented in section VI).

The matrix representing the PSF is deduced for each frame from
information about speed given by (4). For the subsequent blurring task
the kernel is identified by a sparse matrix, with non-zero values iden-
tifying a straight line representing the direction of camera movements.
The length and direction of this line is calculated by computing the

3D displacement of the interest point p in the capturing time interval
T using the estimated linear and angular speed as follows

« _ (R(WwT) T .
P =10...0 1 )P
and projecting it on the image plane using the projection function
h () as follows

Ap=p"—-p, ()

Ap=nh(p") —h(p), ®)

see also fig. (2). R(wT) is the rotation matrix associated to the angle
wT.

The PSF is the smallest possible matrix containing the Ap and
presenting non-zero entries along Ap direction. Non-zero values have
to be normalized in order to make their sum equal to one; this will
ensure that the convolution process will not affect the luminosity of
the patch (otherwise the result would be brighter or darker).

Figure 2: Kernel computation: the displacement of the considered
point Ap during the shutter time 7" is projected on the image plane.
The blurring kernel (the dark gray rectangular) is the smallest matrix
containing entirely the projection Ap.

B. Blurring prediction algorithms

Algorithm (1) presents the pseudo-code of the operations that
are used in the proposed solution to predict the blurred patch. It
requires as input information contained in the predicted state ft;,, q -
It performs the following operations: Ap is computed as in (8) and
its length is compared with a threshold to verify if the blurring is not
negligible (line 1), if blurring is not negligible (line 2), the patch is
blurred (lines 3, 4) and the result of this operation is stored into a
new patch p’ (line 5); otherwise, p’ will be equal to p.

Algorithm 1 Blur prediction

Input: patch p, predicted state ;|
Output: predicted patch p’
: Ap < compute_displacement (p, /,Lk+1|k)
if ||Ap|| > MIN_SIZE then
PSF « compute_kernel (AB)
p’ <« blur_patch (p, PSF)
end if

AN A

C. Architecture

The developed architecture is described in figure 3. The camera
used as input device is sending captured frames to the capture and
preprocess block, that allocates the captured frame fi and sends it
to the Mono-SLAM main block, that is in charge of processing the
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Figure 3: Architecture of the proposed solution.

frame to reconstruct the camera motion. The output of the Mono-
SLAM main block is the estimation of the state of the system, as in
equation (2).

The matching feature block is in charge of matching the predicted
features contained in the set 7)/;\1@71 in the new frame. For perfor-
mance reasons, matches for all features are searched in the areas
(modelled as ellipsoid) in which there is the 99% probability of
finding them. This block uses information contained in the predicted
measurements Qk‘k_l and its related covariance Sy;—_1. Its output
is the measures vector y, .

When y, has been computed, the algorithm performs the standard
EKF filter. Firstly, the innovation vector ex = Yy, — Ypp_1 I8
computed; secondly, the update and prediction steps are performed
to build, respectively, the updated state p,, with related covariance
3k and the predicted state 1y, 1)k with related covariance Xy 1.

The predicted state is used to build, for each patch in the set Py,
the set of blurred patches P, +1)% expected in the next frame by
iteratively run the algorithm (1) for all elements in the set Py.

The patches handler block is encharged of managing the Py set.
In particular, it is used to find the best features to track at the very
beginning (i.e., when the first frame is being acquired) and when
old patches have been deleted because they are no more useful (e.g.,
when they go outside the framing) and must be replaced.

Finally, note that z~' represents a delay equal to the inverse of
the camera frame rate, useful to store predicted information until a
new frame has been acquired.

V. IMPLEMENTATION

The Mono-SLAM algorithm and its improvements here presented
has been implemented using the Robotic Operating System (ROS)
framework [18], version Groovy, in C++ under Linux Ubuntu OS.
Mathematical computations required by EKF are performed using
the Eigen3 open source library [19], while image processing is
performed using the OpenCV library, v2.4 [20]. The camera used
in the experiment is a firewire camera with a temporal resolution
of 30fps and a spatial one of 340 x 480 pixels in gray scale. The
model used to compute distortion and projection is the same as in
the Camera Calibration Toolbox of Matlab [21], which is used to
calibrate the camera.

The algorithm is implemented as a ROS node which subscribes to
a topic publishing camera frames. By means of a callback, a function
implementing the EKF algorithm is triggered when a new frame
is captured. When the very first frame is captured, the algorithm
proposed in [22] and implemented in OpenCV is used to detect a
certain number (defined via an input parameter) of good features
to track. In addition, for comparison purpose, a flag is used to
enable, or disable, the functions managing blur. In addition, also the
variables necessary for the EKF, like initial and noise covariance,
and camera calibration parameters, are fixed at launch time through
a configuration file.

The ROS node also publishes messages containing the current pose
of the camera and the position of each feature in the world reference
frame, that can be later visualized through the built-in program RVIZ.
Moreover, the node publishes a message containing the current frame
in which the matched features are highlighted and, for each of them,
the corresponding ellipsoid in which the feature is supposed to be
located in the next frame. Features are colored by the RANSAC
algorithm; in particular using red if they were rejected by low inlier
test, blue if accepted as members of Z;, but rejected after the high-
inlier coherency check and green otherwise. All the comparisons
between the base algorithm and the proposed solution are done using
the same videos.

VI. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed solution, several tests
have been carried out over different videos.

These tests show that real-time performance can be achieved
tracking up to 30 features per frame. The test machine is a desktop PC
equipped with an Intel 17-2600K CPU @3.4GHz and 8 GB of RAM.
Moreover, a session of tests has been devoted to test the effectiveness
of the proposed approach in a simulation of a realistic field of usage,
with the camera that is moving approximately at constant speed and
with 30 features to track. Several videos have been recorded, with
the camera moving at different speeds. In addition, the proposed
algorithm has been executed with the same video input more than
once, to test its performances with respect to variations in the input
value for camera occlusion time 7.



The test program executes the proposed solution but also computes
matching with the original (i.e., not blurred) patch as the standard
Mono-SLAM algorithm, and it stores the two cross-correlation val-
ues, ¢ and c* respectively, together with the punctual relative patch
speed in the image, computed by the EKF algorithm. Notice that if
¢ > c¢* the proposed method achieves better results then the original
one, while the other way around if the condition ¢ < ¢* holds true.

To highlight the goodness of the proposed approach, Figure (4)
shows a plot of the index r» = ¢/c* with respect to the relative patch
speed (measured in pixel/frame, that indicates the displacement of
the patch between two subsequent frames) and an occlusion time set
at T' = 3.5ms. As expected, when features are slowly moving this
ratio is almost always equal to one, as the effects of blur are less
noticeable. On the other hand, the faster is moving the feature, the
better the proposed solution works. For this reason, with the exception
of few outliers, the ratio is always bigger than one.

Indexes describing the overall performances of the proposed so-
lution and the original one are here presented. /N indicates the per-
centage of accepted matches with blur handling, while N* represents
the same value but when the blur is not considered. &, £~ and £«
indicate the percentage of cases in which the value c is, respectively,
greater, equal or less then c*, that is when the proposed method
performs better, at the same way or worse then the original one. These
values are presented in Table I with respect to different hypothesized
shutter time 7'. The indexes are also reported in the overall case and
differentiated according to the relative speed of the patch, i.e., low
speed (less than 6pixel/frame), high speed (more than 12pixel/frame)
and medium speed.

Results show that the proposal performs better in particular for
shutter time 71" between 4.5ms and 6ms. Notice that performances
of the original algorithm are actually similar to the ones achieved
by the new proposal when features are moving slowly, while they
decrease when features are moving faster. Moreover, note that the
index NV is almost invariant to the relative speed, indicating that the
proposed approach is robust to fast motion. On the other hand, this is
not true for the classical approach, since values of N™ considerably
decreases when speed increases.

The proposed algorithm almost never achieves performances that
are worse than the ones achieved by the classical approach; when it
happens, it is just because the EKF is intended to work on frames
recorded by a camera moving at a costant speed, and so it may return
uncorrect previsions when the camera is momentaneously accelerat-
ing. Instead, when the blur is properly handled the percentages of
features correctly matched increases considerably, and the measured
cross-correlations indicated that uncertainties on features matching
are significantly reduced.

Note that the proposed solution can not handle high accelerating
motions, since the EKF filters can not accurately predict the new
velocities because the consider model is a constant speed model. In
this case, the motion blur is badly estimated. However, this cases can
not be handled even by the original approach.

The basic algorithm usually performs better in the very first
frames, because the EKF filter is unable of accurately predicting
features location; for this reason, the blur kernel cannot be precisely
calculated, and so blurring is performed incorrectly. However, after
this first initial phase, the predictions given by EKEF filter converge
to the exact features location. After this phase, the blur kernel can
be more precisely estimated, and can be so used to strengthen the
features matching step; on the other hand, the basic SLAM solution
is not robust to quick camera movements or rotations.

On the above mentioned test machine, a typical breakdown of

the processing time required at each frame at 30Hz is described in
Table II.

This indicates that 30Hz performance is easily achieved, as 33 ms
are available for processing each frame. An optimized version of the
code should achieve 60Hz performance.

VII. CONCLUSION

In this paper a novel deblurring approach to improve the robustness
of Mono-SLAM algorithms has been proposed. This approach uses
information given by the EKF to estimate the blur kernel and
cleverly blur expected patches to ease the features matching task. The
theoretical justifications of this approach rely on the fact that motion
blur should not be ignored even when small patches are considered
(as it is currently done by the state of the art algorithms), while
it can be treated as spatially-invariant. The proposed algorithm has
shown to overcome performances obtained by classical Mono-SLAM
algorithms, that are limited by treating as negligible camera occlusion
time. Moreover, it uses the simplest possible linear model for blur
related operations, and so it can fulfill real-time constraints.

Possible future works may be related to define an uncertainty
threshold above which it is useless to consider blur, while classical
SLAM algorithms perform better. More complex model to handle also
spatially-variant motion blur or big amount of noise may be studied,
even if so far tests have not highlighted this necessity. Finally, test
sessions with humanoid robots have already been planned to further
demonstrate the goodness of the proposed approach.
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