
A Kinect-based Front-end for Graph-SLAM

Using Plane Matching in Planar Indoor

Environments

Zehui Yuan, Stefano Rosa, Ludovico Russo, Basilio Bona

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

{<name>.<surname>}@polito.it

Abstract. We present a pose graph optimization approach which en-

ables a mobile robot to create 3D maps of planar indoor environments

using a Microsoft Kinect camera. Rather than using point features, the

approach relies on the registration of planar surfaces. Plane matching is

used to implement a (front-end) for the construction of a pose graph,

which is then optimized by a state-of-the-art (back-end). Vertical planes

are extracted from acquired point clouds associated to the poses of the

robot; then a plane matching algorithm is used to create constraints

among successive robot poses. Place revisiting episodes are detected us-

ing 3D features in order to provide loop closing constraints. These con-

straints provide the input for a pose graph optimization algorithm, which

computes an estimate of the robot trajectory. Finally, the 3D map is

created by attaching to each pose of the trajectory the corresponding

planes. Planar surfaces are more robust and descriptive with respect to

point features and provide an accurate estimate of rotations. Moreover,

the front-end combines geometric and appearance-based information to

filter out outliers and perform robust plane association. Preliminary ex-

perimental results in real environments show that the approach is able

to create 3D maps which are consistent and close to reality.

Keywords: SLAM, RGB-D, Plane matching

1 Introduction

The problem of 3D Simultaneous Localization and Mapping (SLAM) [1, 2, 3, 4]
has attracted a conspicuous attention from the robotics community in the latest
years. For mobile robots, the knowledge of a map containing a rich description of
the environment is essential for navigation, surveying tasks, and manipulation,
especially when the robot has to operate in 3D scenarios. In contrast to planar
occupancy grid maps, 3D maps include more detailed information about the
environment and are becoming more and more popular due to the availability
of new kinds of 3D sensors. Typically, laser range finders and depth cameras
were used for 3D SLAM approaches in order to acquire dense point clouds [5,
6]. Recently, Microsoft Kinect [7] has dominated the stage of 3D robotic sensing,

2 Zehui Yuan, Stefano Rosa, Ludovico Russo, Basilio Bona

as a low-cost, low-power sensor, that is able to acquire color and depth images
with an high frame rate.

In principle, a robot equipped with a 3D camera and wheel encoders would be
able to create a 3D dense map of the environment by attaching the point clouds
to the corresponding poses estimated from wheel odometry, but this strategy
su↵ers from error accumulation [8]. A well assessed strategy for avoiding un-
bounded error accumulation is the so called pose graph optimization, which is
an optimization-based SLAM approach [9, 10]. In pose graph optimization, the
poses assumed by a mobile robot at successive time steps are modeled as nodes
in a graph (the pose graph), while edges between nodes represent inter-nodal
measurements. For instance, odometric measurements are modeled as edges (or
constraints) connecting consecutive nodes, while loop closing edges connect ar-
bitrary nodes’ pairs and model place revisiting episodes. Nonlinear optimization
algorithms (e.g., [11]) can then be then used to find the nodes’ poses that maxi-
mize the likelihood of the inter-nodal measurements, hence obtaining an accurate
estimate of the poses assumed by the robot.

A standard approach for retrieving inter-nodal constraints is based on the It-
erative Closest Point (ICP) algorithm [12], which is widely used for scan match-
ing [13, 6, 5]. In visual SLAM, most approaches rely on the extraction and
matching of sparse 2D visual features, like SIFT [14], SURF [15], and ORB [16].
The features are first extracted from the 2D image and then projected in 3D
using the depth image. From these 3D features, the relative transformations be-
tween frames are computed using vector registration algorithms. However, due
to the fact that the depth map is digitalized, the depth data is often imprecise
or incorrect. Moreover, features often lie at the border of objects; this translates
to depth estimation errors. Another crucial problem is that no visual feature
provides perfect robustness. Usually, after feature matching, RANdom SAm-
ple Consensus (RANSAC) [17] is used to find a subset of feature pairs and to
estimate their correspondences. Recently 3D feature descriptors have been pre-
sented, like Normal Aligned Radial Feature (NARF) descriptor [18] and Fast
Point Feature Histogram (FPFH) [19].

In indoor environments, several structures like doors, walls, tables, ground
floor, etc., can be modeled as planar surface patches, which are parallel or per-
pendicular to each other. Therefore, planar patches have been found to be a good
feature for 3D visual SLAM, while also being a good representation for the fi-
nal 3D map. Approaches to 3D environment mapping using planar features have
been proposed in [4, 20, 21, 22]. In those works planar surfaces are matched based
on geometric constraints in order to estimate their relative roto-translation. It
should be noted that in those works planes are obtained using laser range finders,
which provide higher accuracy, larger field of view, and longer range compared
to RGB-D (depth) cameras.

In this paper we propose an approach for 3D mapping in planar indoor en-
vironments using a Kinect sensor. The approach is based on the alignment of
vertical planar surfaces and corners, which are dominant features in indoor areas.
The idea is (i) to extract planes and corners from raw point clouds, (ii) to recog-

A Kinect-based Front-end for Graph-SLAM Using Plane Matching 3

nize corresponding planes in di↵erent point clouds, (iii) to retrieve the relative
geometric constraints between frames by using a plane matching algorithm, and
(iv) to construct a pose graph with these constraints and feed it to a pose graph
optimizer algorithm to obtain a 3D map. The core of the paper is the creation of
a plane-based front-end for a graph-SLAM algorithm. The front-end combines
geometric constraints, appearance-based information and the Viewpoint Feature
Histograms (VFH) [23] to compute robust and accurate inter-nodal constraints.
Experimental results show that the algorithm is able to find a good estimate of
the 2D trajectory of the robot, and the 3D map obtained from the estimated
trajectory is a faithful representation of the real environment.

The plane-based 3D mapping approach is presented in Section 2. After briefly
discussing the plane extraction phase in Section 2.1, a new algorithm for find-
ing correct correspondences is presented in Section 2.2. Section 2.3 describes an
approach for loop closure detection using VFH features, and Section 2.4 com-
ments on the pose graph optimization phase. Experimental results are discussed
in Section 3. Conclusions and future work are reported in Section 4.

2 Plane-based Trajectory Estimation

2.1 Plane Extraction

This section describes the extraction of planes from each point cloud P
t

acquired
at time t. In this work we only consider vertical or nearly vertical planes. The
motivation for this choice is twofold: first, since we are addressing a planar
navigation problem, horizontal planes do not provide meaningful constraints on
robot pose; second, in an indoor environment large planar patches are most likely
to be walls, pillars, or other static structures, then the approach is expected to
be more resilient to the presence of dynamic objects.

At each time instant we sample a color image and a corresponding point
cloud. Acquired point clouds su↵er from di↵erent noise and error sources. So
we apply a passthrough filter on distance is applied to discard points which are
too far and have low accuracy. Downsampling is also applied in order to reduce
processing time.

The plane extraction approach is based on the well known RANSAC [17]
method for robust model fitting. RANSAC is iteratively executed to extract the
largest plane from the point cloud until a pre-defined ending condition is met.
For each iteration of the algorithm, the plane with the largest number of inliers
is returned. We define the extracted plane as P

t,i

, where t is the index of point
cloud, and i is the index of extracted plane in point cloud P

t

. The overall set of
vertical plane extracted at time t is called P v

t

. In order to consider only planes
that are roughly vertical, we compute the angle between its normal vector n and
the zr axis of the robot reference frame, which points upwards. A plane which
meets the following equation

|nT · zr| < cos
⇣⇡
2
� �

⌘
(1)

4 Zehui Yuan, Stefano Rosa, Ludovico Russo, Basilio Bona

is considered a vertical plane, where � is the maximum acceptable deviation
from the zr axis.

If the plane satisfies condition (1), we perform a distance-based clustering on
its points to find large contiguous regions of points in the plane and each cluster
with a su�cient number of points is saved as a new plane, while the remaining are
discarded. With this process we remove noisy points or small clusters that fit to
the extracted plane but are not part of a large contiguous surface (e.g., a door
frame leaning out from the surrounding wall), and separate multiple surfaces
that are co-planar but physically belong to di↵erent objects, such as two tables
at same height. The points corresponding to the preprocessed planes are stored
in the set P v

t

(together with the planes parameters) and removed from the point
cloud.

Due to noise and occlusions, a plane could be split into several planar patches
(over-segmentation). Therefore, we compare the vertical planes in P v

t

and we
merge planes that are coplanar and whose support points are close enough.
After all the extracted planes have been refined, small planar surfaces having
area less than a pre-defined threshold are ignored.

After computing the set P v

t

, we are interested in understanding how the
planes in the set relate with each other: for instance, a pair of orthogonal planes
defines a corner, which is more robust and distinguishable in indoor environment.
Moreover, a single corner is enough to lock all degrees of freedom in space, since
we can associate to a corner both an orientation and a position, while a plane
only constraints a distance and an orientation. Two vertical planes P

t,i

and P
t,j

define a corner if the two conditions are met:

1. they are perpendicular to each other, i.e., n
i

T · n
j

' 0.
2. their intersection points p

C

lies (up to some tolerance D
CB

) inside the
boundary of each of them. Mathematically, this can be expressed as

d(p
C

,P
B

) D
CB

(2)

where P
B

is the boundary of the vertical plane.

2.2 Plane Matching

We define the robot frame F
t

as the pose of the robot at time t, identified by three
axes: zr (already introduced in the previous section), which is perpendicular to
the plane in which the robot moves, yr heading towards the direction of motion
of the robot, and xr, completing the tern.

We consider the set P v

t

of planes observed from frame F
t

and containing N
t

planes. We want to establish correspondences between planes in P v

t

and planes in
P v

t�1, i.e., which planes’ pair (P
t,i

, P
t�1,j) represent the same physical location.

On the assumption that the floor is flat, and considering vertical planar
patches only, it is possible to project them onto the xryr-plane and use their
projections, i.e., 2D lines, to represent the planes. We parametrize the 2D lines
in terms of distance d from the robot and the relative angle ✓ 2 (�⇡,+⇡] (both
expressed in the robot frame). The orientation ✓ of the projected plane is defined

A Kinect-based Front-end for Graph-SLAM Using Plane Matching 5

to be the angle between yr axis and the projection line. The projection line is
oriented in clockwise direction such that the robot is always on the right-hand
side of the plane. The advantage is that the robot can distinguish from which
side a plane is observed.

In our work, the orientation angle ✓, combined with distance d of the ex-
tracted planes are used together to estimate correspondences. Moreover their
color histograms are compared to make correspondences more robust and to dis-
ambiguate planes which have similar values for ✓ and d. Odometry information
is used as a constraint for plane matching. The use of di↵erent tests is important
in order to discard most of the false correspondences, which are unavoidable in
practice. For each pair (P

t,i

, P
t�1,j), with P

t,i

2 P v

t

and P
t�1,j 2 P v

t�1 we apply
the following tests.

Odometry rotation agreement test Since odometry is available, we can
use it to choose, among the candidate matches, the ones that meet the rotation
agreement with the odometry values. Given odometry information, we can easily
compute the odometric rotation matrix Rt

t�1 between frame F
t�1 and F

t

. The
plane in current frame F

t

is transformed into its previous reference frame F
t�1,

then its parameters (✓̂
i

, d̂
i

) in reference frame F
t�1 are computed. Then, we look

for all planes in P v

t�1 satisfying

k ˆ✓
i

� ✓
j

k �✓ (3)

where ✓
j

is the orientation of the j-th plane in P v

t�1 and�✓ is a fixed threshold. If

the orientation ✓
j

of the plane is roughly equal to ✓̂
i

(expressed in frame F
t�1),

i.e. Eq. (3) is satisfied, then the j-th plane of P v

t�1 is selected as a candidate
match for the i-th plane in the set P v

t

.

Odometry translation agreement test After the first test, a subset of can-
didate planes corresponding to the query plane P

t,i

is obtained. Similarly to
the previous test, we can then check if the candidate matches are in agreement
with the translation information provided by odometry. Odometry provides the
the translation T t

t�1. Then, we can use it to select, among the candidate plane
matches, the ones that are in agreement with the odometry translation values.
More formally, the candidate pairs pass the odometry translation agreement test
if they satisfy the following inequality:

k ˆd
i

� d
j

k �d (4)

where d̂
i

and d
j

are distances of plane P̂
t,i

(expressed in frame F
t�1) and P

t�1,j

to the origin respectively, and �d is the pre-defined threshold describing how
close two planes are required to be.

6 Zehui Yuan, Stefano Rosa, Ludovico Russo, Basilio Bona

Appearance test In indoor environments, some planes can be very close to
each other. For instance when a door is closed, it is parallel to the wall, and
usually there is a small displacement between them along their normal direction.
In such a case, color can be used to disambiguate plane correspondences. Color
histograms in RGB space for the candidate matching planes are calculated and
compared. Planes with the highest color similarity are chosen as corresponding
planes. Given two color histograms H

i

and H
j

, the correlation measure shown
in in the following equation is used to estimate their similarity:

d(H
i

, H
j

) =

P
I

(H
i

(I)� ¯H
i

)(H
j

(I)� ¯H
j

)qP
I

(H
i

(I)� ¯H
i

)

2
(H

j

(I)� ¯H
j

)

2
(5)

For each query plane P
t,i

, the corresponding plane with the maximum correla-
tion value is chosen as best match.

Plane matching consistency test In our work, most of the times only few
corresponding planes are found in two successive frames; therefore RANSAC
could not be used. In order to discard wrong matches, we use the following
certainty factor instead:

u = k
a

⇥ 1

min(S
i

, S
j

)

+ k
o

⇥ | ˆ✓
i

� ✓
j

|+ k
d

⇥ | ˆd
i

� d
j

| (6)

where k
a

, k
o

, k
d

are three coe�cients weighting the importance of corresponding
plane areas, orientation and distance agreement with odometry constraint, which
is similar to the measure metric proposed in [24]. S is the area of a plane.
Eq. (6) implies that a matching between two large planes is more reliable than a
matching between small ones. Since the odometric error is usually large, in our
work we choose k

a

to be bigger than k
o

and k
d

.
After plane matching we check the relative rotations obtained by the de-

termined pairs of corresponding planes. For every two relative rotations, their
absolute di↵erence is computed, and the maximum one is obtained. If the max-
imum di↵erence is less than a threshold, all the relative rotations are valid, i.e.
all of the matches are correct. Otherwise wrong matches are assumed to exist.
Based on the above discussion, the worst match indicated by the largest index is
discarded. The same step is executed repeatedly until the maximum di↵erence
between relative rotations is less than the pre-defined threshold.

As for the problem of plane matching, corner matching consists in finding
which corners represent the same physical corner and labelling them with the
same index. Since all detected corners are made by intersecting planes, corner
matching can be built on the basis of plane correspondences results. That means
that corners which are constructed by the same planes are considered to be the
same physical corner.

When all the detected planes and corners are labeled with indexes, we can
estimate the transformations between pairs of robot poses, which include planes
and corners with common indexes. The obtained edges are added to the pose
graph. It is important to note that only the relative rotation angle can be ob-
tained from a pair of corresponding planes, while a pair of corresponding corners
can provide both relative rotation and translation information.

A Kinect-based Front-end for Graph-SLAM Using Plane Matching 7

2.3 Loop Closure Detection

The main issue for vision-based loop-closure detection concerns the di�culty of
recognizing already visited areas. In our work we use VFH descriptor [23]. VFH
encodes both geometry and viewpoint information and stores the relative angular
directions of surface normals in a histogram. The strong recognition ability of
VFH is used here to find corresponding point clouds in order to recognize place
revisiting events. Given a point cloud P

i

, its VFH descriptor D
i

is computed
from the current camera position and compared to the VFH estimated by the
previous point clouds. Since comparing the current point cloud with all the
previous ones would be computationally intensive, we only consider point clouds
which contain at least one corner.

To make the loop closure detection more reliable, histogram color features are
used. Given two point clouds P

i

and P
j

, if the distance of their VFH descriptors
is less than a maximum tolerance threshold D

th

, and, the covariance of their
color descriptors is larger than a pre-defined threshold H

th

, P
i

is considered to
be similar to P

j

. It should be noted that there may be more than one point
cloud satisfying this constraint; in this case, the point cloud with the largest
color covariance is considered to match P

i

.

2.4 Pose Graph Optimization

After finding correspondences between planes and corners, the relative rotations
and roto-translations which have been found are used to construct the edges of a
pose graph. To create a globally consistent trajectory, we optimize the pose graph
using the linear pose-graph optimizer presented in [10]. That approach has been
proven to be accurate and fast in practice. After obtaining the corrected robot
trajectory we attach the planar surfaces P v

t

or the point clouds to corresponding
corrected poses, in order to create a 3D map of the environment.

3 Experimental Results and Discussion

In order to evaluate the proposed plane-based 3D mapping algorithm, three
experiments were carried out inside Dipartimento di Automatica e Informatica at
Politecnico Di Torino. A Pioneer P3DX robot equipped with a laser range finder
(SICK LMS-200) and a Microsoft Kinect sensor, is used in all the experiments.
Laser is used only for obstacle avoidance and for benchmarking, while 3D point
clouds are collected using the Kinect camera.

Point Cloud Library (PCL) [25] is used for point cloud processing, while
OpenCV library [26] is used for processing the color histograms. In our experi-
ments planes with an area smaller than 0.25 m2 and with a number of supporting
points smaller than 500 are filtered out. We use the following values for plane
detection and matching: � = 0.2 rad, D

CB

= 0.1 m, �✓ = 0.4 rad, �d = 0.2 m,
k
a

= 0.05, k
o

= k
d

= 2, H
th

= 0.45.

Ludovico Russo

8 Zehui Yuan, Stefano Rosa, Ludovico Russo, Basilio Bona

3.1 Long corridor

In this experiment, the robot travels in a corridor of dimensions 35 m ⇥ 4 m. In
our experiment the robot starts from the left side of the corridor and goes along
the corridor up to the right side, then it returns to the starting location, in order
to form a loop closing. The robot travels autonomously using a simple obstacle
avoidance algorithm. During the run the robot captures 258 point clouds. In
order to evaluate the performances of the proposed approach, while gathering
the data for the experiment we also perform localization on the robot using the
laser scanner, in order to obtain an estimate of the trajectory which is close to the
ground-truth. In order to localize the robot, we use a 2D occupancy grid map of
the environment. For localization we use the sequential Montecarlo localization
(MCL) algorithm described in [27]. The trajectory obtained from localization,
while not precise, can be used as a coarse reference since the Cartesian error on
the pose estimation was shown to be lower than 0.4 m with the same setup we
used in this experiment [27], once the robot is correctly localized. At the end of
the experiment we compare the trajectory estimated by our SLAM algorithm, as
well as the one obtained by odometry only, with the trajectory estimated from
robot localization.

Fig. 1(a) shows a comparison between the robot trajectory estimated by
odometry only and by our SLAM algorithm with respect to localization esti-
mates. It can be noted that the trajectory estimated by our approach is close
to the reference trajectory estimated by localization, while the odometric traje-
cotry is quickly drifting from the ground-truth, with a di↵erence at the end of
approximately 35 m from the reference.

−10 −5 0 5 10 15 20
−35

−30

−25

−20

−15

−10

−5

0

5

x[m]

y[
m

]

Odometry

Localization

Plane−based SLAM

(a) (b)

Fig. 1. Long corridor experiment. (a) Estimated trajectories. Red line is the odometric

trajecotry only, the green line is the optimized trajectory, the blue line is the ground-

truth estimated by MCL. (b) Top view of resulting map of the corridor.

Fig. 1(b) shows the resulting 3D map created using our algorithm. Walls and
doors are correctly mapped. Notice that the floor does not appear in the final
3D map since the Microsoft Kinect was parallel to the ground plane (at an angle
of 45� around the vertical) so few planes are detected on the floor due to the
field of view of the sensor, and most of them are discarded for being too small
or having few supporting points.

A Kinect-based Front-end for Graph-SLAM Using Plane Matching 9

3.2 A Large Loop

We also tested the approach in a larger environment. The scenario consists of
three corridors. The corridors are labeled as A, B, and C respectively, and their
configuration is shown in Figure 2(b). The real appearance is also shown in
Figure 2(c). In this experiment the robot moved according to a wall following
strategy; the approximate trajectory is shown in Figure 2(c). The robot traveled
a total distance of 180 m and collected 650 sensor samples. A smaller loop was
closed, shown in red line in 2(c), followed by one global loop, shown in magenta
color.

(a) (b) (c)

Fig. 2. (a) The corridor. (b) The path followed by the robot. (c) The three areas.

(a) (b) (c)

Fig. 3. (a) Graph for the large loop experiment. Red line represents odometric con-

traints, blue dashed lines show loop closure constraints. (b) The 3D map obtained using

odometry only. (c) The 3D map estimated using plane-based SLAM.

In figure 3(a) we show the constrained graph, while the corresponding 3D
maps are shown in Figure 3.

To show the e↵ectiveness of the proposed loop closure detection using VFH,
we shown in Figure 3(a) the estimated trajectory using plane-based SLAM but
without loop closings.

10 REFERENCES

As it can be seen in Figure 3, the obtained 3D map matches the real environ-
ment; in particular walls, doors and pillars are correctly represented in the map.
However, it should be noted that in corridor A the walls are not parallel. The
reason is that corridor A is not a closed, so when the robot turned no planar
features could be detected in that part of the map, so only odometric constraints
were used, leading to orientation errors.

Some misalignments are also present in corridor C. The reason for that is
the presence of window glasses on one side of the corridor. Those surfaces are
mostly invisible to the Kinect sensor.

4 Conclusion

In this work we presented a plane-based approach for the creation of 3D maps of
planar indoor environments. We used a robot equipped with a Microsoft Kinect
camera and wheel encoders. Vertical planar surfaces are extracted from the ob-
tained point clouds. From the extracted planes correspondences are found be-
tween consecutive frames, as well as corners formed by two intersecting vertical
planes, using geometric and color constraints in order to discard wrong matches.
Loop closings are detected using a combination of 3D features, color features and
geometric constraints. The obtained constraints are used to create a pose-graph
which is then fed to a pose-graph optimization algorithm. Finally a 3D map of
the environment is built by attaching the extracted planes to their relative opti-
mized poses. Experimental results validates the proposed approach by showing
that the reconstructed 3D maps are consistent and close to the real scenarios.
Ongoing work is being devoted to enhancing the field of view by using two Kinect
sensors and improving the back-end by introducing switchable constraints [28].
Future work will be devoted to the refinement of the pose and appearance of
the planes over di↵erent observations, in order to improve the overall robustness
and enhance the final map.

References

[1] P. Henry et al. “RGB-D mapping: Using depth cameras for dense 3D mod-
eling of indoor environments”. In: Proceedings of the International Sym-
posium on Experimental Robotics (ISER). 2010.

[2] M. Magnusson, A. Lilienthal, and T. Duckett. “Scan registration for au-
tonomous mining vehicles using 3D-NDT”. In: Journal of Field Robotics
24.10 (2007), pp. 803–827.

[3] A. Nüchter, K. Lingemann, and J. Hertzberg. “6D SLAM-3D mapping out-
door environments”. In: Journal of Field Robotics 24.8-9 (2007), pp. 699–
722.

[4] K. Pathak et al. “Online three-dimensional SLAM by registration of large
planar surface segments and closed form pose-graph relaxation”. In: Jour-
nal of Field Robotics, Special Issue on 3D Mapping 27.1 (2010), pp. 52–
84.

REFERENCES 11

[5] S. May et al. “Three dimensional mapping with time-of-flight cameras”.
In: Journal of Field Robotics 26.11-12 (2009), pp. 934–965.

[6] S. Thrun, W. Burgard, and D. Fox. “A real-time algorithm for mobile robot
mapping with applications to multi-robot and 3D mapping”. In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA). 2000.

[7] Microsoft. In: http://www.xbox.com/en-US/kinect (2010).
[8] J. Borenstein and L. Feng. “Measurement and correction of systematic

odometry errors in mobile Robots”. In: IEEE Transactions on Robotics
and Automation 12.5 (1996), pp. 869–880.

[9] G. Grisetti, C. Stachniss, and W. Burgard. “Non-linear constraint net-
work optimization for e�cient map learning”. In: IEEE Transactions on
Intelligent Transportation Systems 10.3 (2009), pp. 428–439.

[10] L. Carlone et al. “A linear approximation for graph-based simultaneous
localization and mapping”. In: Proc. of Robotics: Science and Systems.
2011.

[11] G. Grisetti et al. “A Hierarchical Optimization on Manifolds for Online
2D and 3D Mapping”. In: Proc. of the IEEE Int. Conf. on Robotics and
Automation. 2010.

[12] P. J. Besl and N. D. Mckay. “A method for registration of 3-D shapes”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2
(1992), pp. 239–256.

[13] Y. Furukawa et al. “Reconstructing building interiors from images”. In:
Proceedings of the International Conference on Computer Vision (ICCV).
2009.

[14] D.G. Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International Journal of Computer Vision 60.2 (2004), pp. 91–110.

[15] H. Bay and A. Ess. “SURF: Speeded up robust features”. In: Computer
Vision and Image Understanding (CVIU) 110.3 (2008), pp. 346–359.

[16] E. Rublee et al. “ORB: an e�cient alternative to SIFT or SURF”. In:
Proceedings of the IEEE International Conference on Computer Vision
(ICCV). 2011.

[17] M.A. Fischler and R.C. Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography”. In: Commun. ACM 24.6 (1981), pp. 381–395.

[18] B. Steder et al. “Point feature extraction on 3D range scans taking into ac-
count object boundaries”. In: Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA). 2011.

[19] R.B.Rusu, N.Blodow, and M.Beetz. “Fast point feature histograms (FPFH)
for 3D registration”. In: Proceedings of the 2009 IEEE International Con-
ference on Robotics and Automation(ICRA). 2009.

[20] K. Pathak et al. “Fast 3D mapping by matching planes extracted from
range sensor point-clouds”. In: International Conference on Intelligent
Robots and Systems (IROS). St. Louis, 2009.

http://www.xbox.com/en-US/kinect

12 REFERENCES

[21] K. Pathak et al. “Fast registration based on noisy planes with unknown
correspondences for 3D mapping”. In: IEEE Transactions on Robotics 26.3
(2010), pp. 424–441.

[22] A. Birk et al. “Surface representations for 3D mapping: a case for a paradigm
shift”. In: Künstl Intell 24.3 (2010), pp. 249–254.

[23] R.B. Rusu et al. “Fast 3D recognition and pose using the viewpoint feature
histogram”. In: Proceeding of the International Conference on Intelligent
Robots and Systems (IROS). 2010.

[24] A.Harati and R.Siegwart. “Orthogonal 3D-SLAM for indoor environments
using right angle corners”. In: Proceedings of the 3rd European Conf. Mo-
bile Robotics (ECMR’07). 2007.

[25] R. B. Rusu and S. Cousins. “3D is here: Point Cloud Library (PCL)”. In:
Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). Shanghai, China, 2011.

[26] G.Bradski. “The OpenCV Library”. In: Dr.Dobb’s Journal of Software
Tools (2000).

[27] F.Abrate et al. “Three-state Multirobot collaborative localization in sym-
metrical environments”. In: Proceedings of the 9th Conference on Au-
tonomous Robot Systems and Competitions. 2009.

[28] N. Suenderhauf and P. Protzel. “Switchable Constraints for Robust Pose
Graph SLAM”. In: Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS). 2012.

	 A Kinect-based Front-end for Graph-SLAM Using Plane Matching in Planar Indoor Environments

