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Abstract. At the dawn of cloud robotics one of the biggest challenges is to suc-

cessfully exploit the power offered by the internet for acquiring and sharing in-

formation, in order to build a common knowledge base among the agents. In 

this paper we propose a cloud robotics service for emergency management in a 

smart city scenario. The application is capable of collecting significant open da-

ta over the internet. Then it  uses them in the mission planning phase, in order 

to autonomously define a set of waypoints towards the target coordinates. 

1 Introduction 

The emerging technology of cloud computing [1] is revolutionizing the robotics in-

dustry, opening new scenarios where robots are seen as agents and are managed by a 

high-level platform [2]. In this perspective cloud computing allows robots to share 

knowledge and perform demanding real-time data processing [3]. 

The cloud robotics approach involves the concept of “robot-as-a-service” [4], refer-

ring to robots that, abstracted from the hardware layer, can be dynamically combined 

to give support to the execution of specific applications [3], [5], [6]. 

This paper presents a service, supported by open data, for emergency management 

in a smart city environment within a cloud robotics architecture. An actual security 

problem inspired us in the definition of a test case, which was described by the au-

thors in a preliminary version of this work [7]. Surveillance cameras are not an effi-

cient way to decrease crime rates in urban spaces, considering that criminal events 

such as theft, robbery, rape, etc.  may occur in  unmonitored zones.   

We imagine the following workflow: the user requests the emergency service from 

the cloud, by providing GPS coordinates and an identification number via a 

smartphone application. The cloud platform chooses an UAV to be sent to the emer-

gency site in order to provide monitoring and support. In the meantime, a police of-



ficer can access the service via a web browser to monitor the current position of the 

UAV, its telemetry, and to receive a video stream from the UAV’s camera.  

A special block of the cloud robotics platform, called in this work ODOMI (Open 

Data Oriented MIssion planner), computes a suitable path to send to the UAV from its 

initial position to the emergency zone. ODOMI calculates the best path for the UAV 

based on the knowledge of possible obstacles and on the availability of communica-

tion between the platform and the UAV. This knowledge is acquired from open data  

accessible over the Internet.  

Finally the platform transforms the path computed by ODOMI into a mission, encod-

ing it in a lower level language message to be deployed to the UAV. 

The architecture is based on the Robot Operating System (ROS) [8]. 
Roadmap of the paper.  The paper is structured as follows: Section 2 describes the 

service from the user and police officer point of view. The cloud robotics platform 
structure and its implementation are explained in Section 3. The ODOMI block is 
presented in Section 4, while Section 5 draws some conclusions. 

2 Interfaces 

In this work two interfaces are implemented to interact with the services: a user-side 

interface to request help and assistance from the UAV and a police-side interface for 

the emergency monitoring and management.   

The first interface is a smartphone application that sends a GET request, over 

HTTP protocol, to an ad-hoc server listening on a predefined URL and port. The GET 

request contains the GPS coordinates at the moment of the emergency call and an 

Identification Number.  

The second interface is designed for the police force. The officer accesses all the 

information collected by telemetry and the video stream via a web browser. In this 

way the officer can know the actual position of the UAV, displayed on a map embed-

ded in the web page. Information about estimated remaining  time and distance for 

mission accomplishment are also made available. In addition, the video streaming 

from the UAV camera can be used by the police officer to offer assistance to the per-

son in emergency. 

3 The cloud platform 

Existing cloud robotics platforms [19] implement custom protocols in order to 

connect robots to containers residing in Virtual Machines. In our implementation we 

want to maintain the standard ROS protocol for communication between Endpoints 

instead. In this way users are not  forced to create new robot drivers or ”bridge” node 

between the ROS framework and the containers; but they can simply use standard 

ROS nodes and interfaces. 



3.1 The basic elements  

The basic elements composing the robotics platform presented in this paper, are the 

following (Figure 1): 

 Node (N): it represents the “building block” of a platform service. A node is in-

stalled if it resides in an instance, while if it resides in a service container, it is 

started.  

 Endpoint: two types of endpoints are possible: 

 Internal (IE): it belongs to a node and its purpose is connecting this both to 

other nodes in the current service container and to an external endpoint (EE) in 

its container.  

 External (EE): it belongs to a service container. It is the link to an endpoint be-

longing to a node residing in another service container. In this way nodes be-

longing to different service containers can be connected each other.   

 Service Container (SC): it is in charge of  organizing services as a set of connect-

ed nodes. It contains (started) nodes. As mentioned above, a service container has 

external endpoint, in order to connect nodes which are started in other service con-

tainers.   

 Instance: it is the object where the platform manager (PM) and the elements de-

scribed previously reside. The instance can be: 

 Normal (NI): it contains Service Containers and (installed) nodes. 

 Simple (SI): it does not contain service containers but only (installed) nodes. 

For starting them, the Simple Instance needs to address the Service Container 

within a Normal Instance. 

 

Fig. 1. The platform objects and their relationships 

The main purpose of these objects is to build services for enabling robotics applica-

tions. These can be enacted by starting nodes (N), which are installed in instances (SI, 

NI), into a service containers (SC). The platform services can be accessed by service 

APIs and can be built by management APIs. Metaphorically speaking, connected ser-

vice containers represent the “remote intelligence” of a robot, the nodes inside them 

are the “neurons” which need to be connected each other; consequently the couple of 



endpoints, when connected each other, can be considered the “synapsis” and, finally, 

APIs are the “senses” enabling the relationships with external world. 

3.2 The Platform Manager 

The Platform Manager is designed to  handle the basic objects described before. It: 

 sends and receives commands through the Command Manager; 

 listens and creates events through Event Manager, triggering a set of controlled 

counteractions when an event occurs through Event Engine. 

In Figure 2 is depicted a logical architecture of Platform Manager. As shown in the 

figure, events and commands are accessed by the Platform API Manager, basically to 

build and manage platform services.  

 

Fig. 2. Platform Manager logic architecture. 

The Event Engine has been conceived to make a platform service more robust and 

resilient. The counteractions can be both service commands (e.g., publish a message) 

and platform commands (e.g., create a service container). The first ones are accessed 

by Service API Manager while the second ones are directly accessed by Platform API 

Manager. The counteractions can be created, read and deleted from users and applica-

tions throughout Rule API Manager. 

3.3 API managers 

External elements, such as robotic applications and users, use APIs to access the plat-

form. In particular (Figure 3): 

 Service API Manager, it is a special node that needs to be started in a service con-

tainer. It exposes APIs to external world for managing the service commands and 

events. 

 Platform API Manager, it exposes APIs to external world  to manage the platform 

commands and events. 



 Rule API Manager, it exposes APIs to external world  to manage the counterac-

tions for the event engine. 

 

Fig. 3. The logical architecture of API managers  

3.4 The cloud oriented Robotic Platform 

In this work we implemented the concepts outlined in previous chapters as follows:  

 Normal Instance (NI): it is a real or virtual machine with high performance.  

 Simple Instance (SI): it is a real or virtual machine with low performance. 

 Service Container (SC): it is a ROS container [8] identified by its ROS master. The 

multi-master robot concert technology [9] enables ROS container multiplicity.  

 Node (N): it is a ROS node.  

 Internal Endpoint (IE): ROS topic, ROS service or ROS action. 

 External Endpoint (EE): ROS topic, ROS service or ROS action of a node in an-

other Service Container. 

Figure 4 depicts our implementation of the cloud robotics platform. In the picture 

sharp edges rectangles stand for NIs, round edges rectangles stand for SCs, dotted 

edges rectangles stand for SIs. Any small circle represents a ROS node and its end-

points are symbolized as small squares. At the platform level every drone connected 

to the cloud constitutes a Normal or a Simple Instance. In the case of Drone 1, the 

Normal Instance contains a Service Container running the driver node (sending and 

retrieving data to and from the aircraft); the Drone 2 is represented by a Simple In-

stance, since its service container is shared with the normal instance named “Virtual 

Machine”. Finally a third possible configuration is presented with Drone n. In this 

case the Service Container (named Adn) runs in a Gateway (ground station). Here 

both adapter and driver node are placed on the same physical machine.The fourth 

Normal Instance presented in the figure, named “Virtual Machine”, cotains both the 

ODOMI (Open Data Oriented MIssion planner) and the Adapter (Ad1 and Ad2) Ser-



vice Containers. Adapter SCs translate ROS messages coming from the drones in 

standard platform messages (i.e. from /sensor_packet_i endpoints to /sensor_packet 

endpoint) and viceversa (i.e. from /drone EE to /flight_plan_i endpoints). 

ODOMI is the core Service Container of the whole platform, and it runs four nodes: 

the rosbridge node (the Service API manager described in previous section), the Mis-

sion Planner, the Path Planner and the Open Data Driver (described in the next sec-

tion).  

 

Fig. 4.   The Cloud Robotics implementation 

Security for the whole platform is assured at the platform gates: API access and in-

stance connection. APIs must be safely accessed after a registration phase, where 

developers are identified and possibly specific security keys are provided. Instances 

are connected to the platform via Virtual Private Network in order not to be easily 

accessed by hackers. Another main requirement is concurrency. ROS framework 

provides multiple-access management with a specific queue mechanism: any ROS 

node can either consume a message queue (subscriber), according to computational 

complexity of consumer algorithm, or produce messages to be queued before sending 

(publisher), according to available bandwidth. 

4 Open Data Oriented MIssion Planner (ODOMI)  

As introduced in the previous paragraph ODOMI is the Service Container in charge 

of organizing the mission and calculating the path for the UAV. It is the only Service 

Container that has privileges to START, STOP or ABORT the mission. 

It is organized in four nodes: 

 Open Data Driver (ODD): The module that retrieves and organizes available in-

formation about the mission scenario. It retrieves available open data and serialize 

them in a well-structured and standardized ROS message   



 RosBridge (RB): it provides JSON API to ROS interface [10]. This node is the 

interface between the smartphone application and the robotics platform, namely the 

Service API Manager that exposes the APIs for sending the target coordinates that 

the drone has to reach to the Mission Planner.  

 Mission Planner (MP): This module takes as input the position of the drone 

(home), the target coordinates and the message from ODD module. The MP sends 

a Bounding Box (BB) to the ODD in order to define accurately the area of inter-

vention according to the initial position of the drone and the position that has to be 

reached. It outputs a map in the proper format for the Path Planner module.  

 Path Planner (PP): It plans the path (set of waypoints) that the UAV has to follow 

in order to successfully accomplish the mission exploiting the data provided by the 

MP module. Once defined, the waypoint set is returned to the MP. 

The input data for the ODD module are continuously provided by retrieving infor-

mation on the Internet by calling the appropriate web-service, packaging them in a 

standard payload independent message on topic /open_data and forwarding them to 

the MP module. 

The message Open_data_msgs/Open_data contains four fields:  

 Int type (static, dynamic): a type field that specifies if the retrieved 

Open_data are static or dynamic (a data is considered dynamic when the infor-

mation associated to it varies considerably during the mission. e.g. road traffic); 
 String label: a human-readable label;  
 Parameter[] attributes: some attributes (e.g. height of the nearest build-

ings);  
 Polygon[] area : a finally an array of polygons, where each polygon is intended 

as a collection of connected geographic coordinates. 

4.1 Open Data supported providers 

The ODD module is able to parse information coming from several Open Data pro-

viders.  

 
Provider Data Response License 

OpenStreetMaps 2D Map  Open Data Commons Open Database 
License (ODbL). 

Geoportale Torino 2D Map,  GML(XML) Creative Commons public licence" 

Attribuzione - 2.5 (ITALIA). 
Height GML(XML) 

Pedestrian areas GML(XML) 

5T Torino Traffic XML Creative Commons - CC0 1.0 Universal 

Table 1.  

In addition to data listed in Table 1 some internet applications or websites provide 

additional geo-referenced data useful to add even more information to the Mission 

http://opendatacommons.org/licenses/odbl/
http://opendatacommons.org/licenses/odbl/
http://creativecommons.org/publicdomain/zero/1.0/#_blank


Planner (Table 2). Since they belong to private companies and are usually subject to 

license and access restriction, these data cannot be defined “Open” in a strict sense 

[11], however they are typically retrievable under some limitation (e.g., maximum 

number of daily/monthly API calls). 

 
Provider Data Type Response License 

Google Maps Digital  
Elevation Map 

XML/JSON Google Maps API licensing*  

OpenSignal Average RSSI XML/JSON OpenSignal API licensing**  

 Tower Info XML/JSON  

* https://developers.google.com/maps/terms 

** http://developer.opensignal.com/terms/ 
 

Table 2.  

4.2 Path planning 

Path planning is a well-known problem in robotics, and it has been recently applied to 

UAVs. UAVs in particular present problems due to their dynamics, three-dimensional 

environments, disturbed operating conditions. Most of the approaches rely on a two-

stage procedure: first they solve the path planning problem, then they use a control 

loop to follow the found trajectory [15]. Some work has been carried out  for path 

planning in presence of uncertainties and with signal constraints in [12], [13], [14].   

Since we do not have to worry about dynamics, we simplify the problem to the  2D 

case (we slice the 3D city map at a certain height) and apply a well-known state of the 

art graph search algorithm, A*. 

Given an area of operation, we build a cost map where the cost of traversal for 

each cell depends on the presence of tall structures. In particular, structures taller than 

a certain threshold are considered obstacles.  

We create another cost map based on LTE signal heat-maps. Information about ob-

stacles and LTE signal are gathered by the ODD module. The cost of each cell is 

based on the RSSI for that area; if the RSSI is below a threshold, the cell is marked as 

obstacle, since we cannot afford to lose connectivity; otherwise the traversal cost for 

the cell depends on the quality of the signal. 

The two cost maps are merged and a path is found from the current position of the 

agent to the destination using A*. We then extract a series of waypoints from this 

trajectory using a simple procedure. For each waypoint we expand a circle around it 

with the radius corresponding to the nearest obstacle. The next point of the trajectory 

that lies on the circumference is taken as the next waypoint. The process is then re-

peated. Figure 5 shows a simulated case, in which the agent has to fly from initial 

GPS to the target position. The two cost maps have been built by the ODD module 

automatically. We can see how the trajectory tries to avoid areas with low signal 

strength.  

https://developers.google.com/maps/terms
http://developer.opensignal.com/terms/


 

Fig. 5. Left: path creation. Buildings are shown in black; areas with low signal strength are 

shown in green; starting point is shown in blue, the goal is shown in red.  Red circles show  the 

minimum distance from obstacles for each waypoint. 

5 Conclusion 

In this work we present a service within a cloud robotics platform for emergency 

management in a smart city environment. In particular we show how an automatic 

exploitation of Open Data information coming from several heterogeneous internet 

providers allows a consistent planning of an UAV mission in a smart city scenario. 

The system has been validated using a simple test case in which the cloud platform 

manages a request for help, received from a smartphone, sending a drone monitoring 

a particular area of the city. 

Although the architecture presented in this paper supports every ROS-compatible 

robot, the proposed test case involves the use of different kind of UAVs, in particular 

quadrotors. Three different products have been selected for the validation of the cloud 

architecture: Parrot AR.drone [16], Mikrokopter [17] and Micropilot [18]. Table 3 

presents an overview of the different architectures. For Mikrokopter and Micropilot 

2128 the ROS support has been found to be poor or totally absent. Therefore their 

ROS interfaces have been written in order to include them in the cloud platform.  

This work is part of the project Fly4SmartCity, in collaboration with Telecom Ita-

lia S.p.A. and it is currently under development. As future work we intend to test the 

performances of the platform and to further explore the range of possibilities offered 

by cloud robotics in a smart city environment, mainly focusing on drone to drone  

knowledge sharing, remote processing and teleoperation in urban environment. 

 

 

 



 Market Command Telemetry link Autonomous 

navigation 

SDK ROS support 

AR.Drone Videogames /Hobby Smartphone (via wifi) Wifi (TCP/UDP)    
Mikrokopter Hobby /Photographer Radio controller UART (Custom Protocol)    

Micropilot 2128 Professional applications Radio controller UART (Custom Protocol)    

Table 3.  
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