
Towards A ROS-Based Autonomous Cloud Robotics Platform for Data Center
Monitoring

Stefano Rosa, Ludovico Orlando Russo, Basilio Bona
Dip. di Automatica e Informatica

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino

{name.surname}@polito.it

Abstract

Data-center monitoring has been a critical subject of
research in recent years. In this paper we present a robotic
system, based on the Robot Operating System (ROS), in
which a mobile robot equipped with a laser range sen-
sor and an IMU is able to autonomously navigate in a
data-center room for accurate monitoring of critical mea-
surements, such as servers’ external temperature, humid-
ity and other physical quantities. The robot is able to au-
tonomously create a map of a previously unknown room,
localize therein and execute a list of measurements at dif-
ferent locations, which are provided by the user via a web
Graphical User Interface (GUI). The application is based
on a cloud robotics infrastructure which encloses the ROS
nodes and exposes REST APIs to the user. We discuss
our implementation choices with regards to the particu-
lar requirements of the scenario, both in terms of robot
navigation and software infrastructure, and present some
preliminary results in a real scenario.

1. Introduction

In recent years autonomous robots and automated sys-
tems have been used more and more in the industrial field
[1], [6]. In this paper, we propose an application of these
techniques to the well known problem of data-center mon-
itoring.

Data-center administrators have to guarantee privacy,
robustness and availability of all servers at any time [22].
This is achieved by intense monitoring and diagnostics
procedures, that become even more challenging with the
increasing dimensions of data-centers.

Moreover, data-centers are among the most intensive
energy consumption buildings in the world [14, 20, 7]. In
particular, energy consumption is due to cooling systems
that maintain the machines in safe working conditions and
to power used in computing. In order to save energy, tem-
perature is often kept as high as possible, near the max-
imum admissible for the machines. As a drawback, this

solution increases the risk of hot spots and thus requires
better accurate monitoring of temperature and humidity.

The dimensions of a typical data-center room makes it
very difficult in practice to instrument the whole environ-
ment with a dense networks of humidity and temperature
sensors. As of now, a solution is to monitor the perimeters
of the room, while other parts are periodically inspected
by human operators. This increases management costs.
Moreover, recording measurements is a repetitive job and
has to be carried out in difficult operating conditions, since
in a data-center room temperatures ranges from 16oC to
32oC. For these reasons, intelligent monitoring through
robotic systems is a good solution to cut down on costs.

Data-center monitoring refers to all the solutions aimed
at measuring environmental variables (usually tempera-
ture and humidity) in data-center rooms for monitoring
and diagnostics purposes. It has been the subject of sev-
eral research activities in recent years, devoted to reduce
cooling and management costs, but at the same time to
reduce machine malfunctions caused by hot spots. Tradi-
tionally, data-center rooms are controlled using Computer
Room Air Conditioning (CRAC) units aimed at pressuriz-
ing a room with cool air. In each room, servers are orga-
nized in racks. A single server room contains hundreds of
racks, each containing tens of servers. Hence, a datacenter
monitoring system have to guarantee efficiency (it should
be better in terms of energy consumption and price), scal-
ability (it should be ready for the even bigger dimension
of data-centers of the next years) and elasticity (it should
be easy to reconfigure also by simply user when changes
happen).

Early works about data-center energy management
have been proposed in [18, 19]. Some of the authors iden-
tify inefficiencies in data-center energy management and
propose a smart cooling system based on localized cool-
ing and a distributed metrology layer to sense and con-
trol temperature and pressure. Other works about efficient
monitoring and control are proposed in [21, 5, 16, 10, 17].
However, most of these approaches require to instrument
the data-center with a complex sensing network and inte-
grated control knobs. These solutions come with two big



problems, that are scalability and management. In par-
ticular, the bigger the size of a data-center is, the more
expensive is the sensing and control interface. More-
over, periodical maintenance, verification and calibration
are required to ensure the perfect working. Even if some
of the cited solutions propose sensing topology that min-
imized the number of required sensors to monitor the
whole room, it is clear that scalability cannot be achieved
using a static monitoring network.

Mobile solutions have been proposed in order to solve
scalability and management problems. For instance, [12,
13] present a Mobile Measurement Technology (MMT)
with a mobile sensor cart, which can optionally be inte-
grated with static sensing, for spatially-dense data-center
monitoring.

Recently, the use of robots has been proposed. In [9]
the authors propose a multi-robot system for data-center
monitoring, where robots communicate each other wire-
lessly. Localization is based on NFC Tags placed on the
floor. However, this solution requires physical interven-
tion on the environment, i.e., placing the NFC tags. The
system does not adapt to changes in the racks position nei-
ther is able to work in not instrumented rooms. Moreover,
this solution does not provide obstacle avoidance to allow
the robots to safely move when people are operating in the
room.

In [15] the authors propose to use a low-cost au-
tonomous robot for data-center monitoring. In this solu-
tion the robot takes advantage of the standard square tiles
on the data-center floor for navigation. The robot tries to
visit all unobstructed tiles of the data-center. When it vis-
its a tile, it stops in its center and takes measurements. The
solution guarantees a complete coverage of the data-center
room. The solution is not able react to moving obstacles,
neither is able to plan an optimized trajectory in order to
measure only a subset of interesting locations. Moreover,
the full coverage approach is too slow to guarantee a cor-
rect time sampling on each point. Finally, this approach is
strongly sensitive to the tiles’ color: it is not suitable with
dark tiles as it would be very difficult to recognize edges.

In this paper, we propose an application of laser-based
mobile service robotics to the well known problem of
data-center monitoring based on the Robot Operating Sys-
tem (ROS). ROS [4] is an open-source, meta-operating
system for robot software development, providing a col-
lection of packages, software building tools and an ar-
chitecture for distributed inter-process and inter-machine
communication. ROS is nowadays becoming the de-facto
standard for robotic software development. The building
blocks of ROS-based applications are the so-called nodes.
A node is a piece of code which implements a specific
functionality. Nodes interact with each other by subscrib-
ing or publishing messages on specific ROS topics. An-
other interaction paradigm, which follows a request/reply
model, is based on the so-called ROS services. The com-
munication between nodes is based on the TCP network
protocol. The ROS framework makes it easy to write mod-

ular and distributed applications, and is well suited for a
cloud robotics scenario. The application takes advantage
of a cloud infrastructure that abstracts the underlying ser-
vices and exposes them as REST APIs and at the same
time is able to monitor the condition of the ROS nodes.

This paper is organized as follows: Section 2 described
the hardware of the robotic platform used in the presented
project, Section 3 describes the Software Architecture
from a very general point of view, while Section 4 and
5 deepen respectively the application and the navigation
layer of the proposed solution; Section 6 presents exper-
iments demonstrating the feasibility of the proposed so-
lution; finally, Section 7 concludes the work and presents
ongoing and future works.

2. Robotic platform

In our experiments we used a Corobot Classic mo-
bile robot from Coroware. It is a 4WD rover endowed
with wheel encoders, an internal inertial measurement unit
(IMU), an Asus XTion camera, front and rear bumpers.
The Corobot rover is an open and extendable platform and
it is fully compatible with ROS.

We also use a Hokuyo URG-04LX laser range finder
and an external XSens MTI IMU, which proved to be
more accurate than the internal one. The sensors that we
use for thermal monitoring are two thermal probes located
at different heights and a USB thermal camera. The robot
is provided with homing capabilities and is able to dock to
a recharging station. The robot has an onboard PC with a
1.6 Ghz CPU and Wi-Fi connectivity. In Figure 1 an im-
age of the robot platform is provided, without the probes
and thermal camera.

Figure 1. The robotic platform used in our
application.

3. System architecture

The software has been developed using the Robot Op-
erating System (ROS) [18] in C++ under Linux. The func-
tional architecture of the approach is shown in Figure 2.
The Map Database stores the different maps that have
been created by the mapping each different data-center
room. Waypoints (goals) and associated tasks to be exe-
cuted when the robot is on the relative waypoint are stored



in the WP Database. The Web User Interfaces provides
interaction with the user via a web browser. The Task
Manager block sends the waypoints to the robot. The node
also handles the different tasks associated to each way-
point. Finally, it is in charge of collecting environmental
data captured by the robot into the WP Database. The
Environmental Sensing Manager collects measurements
from the environmental sensors. The Localization block
provides the pose of the robot inside the map. Finally, the
Path Planning block is in charge of finding the best tra-
jectory to reach each waypoint in the map, while avoiding
dynamic obstacles.

User

Web User Interface

Map Database WP Database
Waypoints

Tasks
Measurements

Task ManagerLocalization

Plath Planning

Environmental
Sensing
Manager

Hardware Layer

Service Layer

Application Layer

ActuatorsNavigation
Sensors

Environmental
sensors

Laser Scanner
IMU

Encorders

Thermal Camera
Thermal Probes

Locomotion

Figure 2. Functional architecture of the pro-
posed solution.

4. Application layer

We developed the proposed system in order to expose
a simple and intuitive Graphical User Interface (GUI) to
the final user. Our platform propose a web-based GUI that
allows one or more users to monitor the robot activities,
to get informations the robot have collect, and to manage
the robot activities by setting new tasks ore delete one,
but also by take control of the robot entirely. Moreover,
the proposed system and its web GUI is based on a cloud
robotics platform, that allows to move part of the robot
intelligence in the cloud, in order to both use simpler and
cheeper hardware on board the robot and remotely provide
information and management tools to user.

In this Section we describe in details the GUI of the
proposed system (Section 4.1) and the architecture of the
Cloud Robotic Platform (Section 4.2).

4.1. Graphical User Interface
We developed a web-based graphical User Interface

(GUI) which provides an intuitive tool for a user to ob-
tain the data collected by the robot, as well as to monitor
the state of the robot and control its motion. The GUI
is connected with the underlying ROS nodes via REST
APIs which are exposed by the cloud infrastructure de-
scribed in Section 4.2, and does not depend on ROS: an

user can login into the service via Internet using a modern
web browser.

The GUI is divided into two different views, as shown
in Figure 3. On the left, the Map View provides infor-
mation about the environment and the robot position and
localization state, while on the right, the Control and In-
formation View provides different panels that allows the
user to get information and interact with the robot.

The Map View shows the map of the current data-center
room and the estimated robot location within the map. It
also shows the targets points (goals) that the robot is sup-
posed to reach in oder and take measurements. The targets
are colored in order to provide quick information about
their status. When the target is green, it means that it is
in the normal working temperature range; a yellow color
shows that the last measured temperature is near to the
alert limit, while red color shows that the temperature is
over that limit. Finally, a yellow circle indicates a goal in
front of the docking station, that the robot automatically
reaches when the battery charge is low. The next target
the robot is going to reach is highlighted by blinking.

In the Control and Information View, the GUI exposes
some panels (the Information Panel, the Targets Panel and
the Control Panels) that allow the user to look at the col-
lected information and control the path followed by the
robot.

• The Information Panel provides the collected data
relative to the selected target (the user can select the
target by simply clicking on it from the Map View):
in particular, it provides a plot of the temperature data
over time and all the collected thermal images.

• The Targets Panel allows the user to create, delete
and rearrange targets: to each target it is possible to
associate one or more tasks (such as “take a thermal
image” or “measure temperature”) that has to be per-
formed when the robot reaches the target. Moreover,
it also allows to add forbidden areas where the robot
can not pass, for instance, in order to force the robot
to avoid areas where technicians are working.

• The Control Panels expose low and high level con-
trols that allow to stop, start or pause the monitoring
phase (in case of stop, the robot automatically goes to
the docking station), to force the robot to reach a spe-
cific target (by selecting it from the Map View) and
finally to manually tele-operate the robot. In this last
case, the user interface also provides video streaming
of the camera mounted on the robot, if available.

4.2. The cloud architecture
The application is based on a cloud robotics platform.

The platform is based on ROS and has been designed to
be generic and builds on the concepts of Platform-as-a-
Service (PaaS) presented in Rapyuta [2] and RObotics in
CONcert (ROCON) [3].



Figure 3. The Web User Interface.

The cloud robotics platform proposed in this paper has
been designed in order to abstract the hardware and soft-
ware layers, to be robust in case of failures (the state of
ROS nodes is known), to offload demanding computations
and finally to expose simple RESTful APIs to the final
user.

The cloud robotics platform is important to guarantee
the robustness needed for long-term operativity in an in-
dustrial application. The infrastructure knows the state
of every node of the system and is in charge of distribut-
ing the computational load in a remote location which is
able to provide better computational performances than
the robot’s onboard PC.

The basic elements of the developed cloud platform,
shown in Figure 4, are:

• Node (N): represents the ”building block” of a plat-
form service. Can be installed if it resides in an in-
stance, or started if it resides in a service container.
It is connected if it has internal or external endpoints.

• Internal Endpoint (IE): connects a node to other
nodes in the current service container, or connects
a node to an external endpoint.

• External Endpoint (EE): belongs to a service con-
tainer. Connects nodes belonging to different service
containers.

• Service Container (SC): groups a set of nodes into a
service.

• Instance: it is the object where the platform manager
(PM) and the elements described before reside. The
instance can be Normal (NI) when it contains a SC
and installed or started nodes; Simple (SI) when it
doesn’t contain any SC but only installed nodes. To
start the nodes the SI calls a SC inside a NI.

Services for enabling robotics applications are built us-
ing these objects. This can be enacted by starting nodes
(N), which are installed in instances (SI, NI), into Service
Containers. The platform services can be accessed by ser-
vice APIs and can be built by management APIs.

The Platform Manager (PM), shown in Figure 5, is in
charge of handling the objects described before. The PM
can send and receive commands through the Command
Manager (CM) object. It can also listen to and create
events through Event Manager (EM) object. Events and

Figure 4. The platform objects and their re-
lationships.

commands are accessed through the Platform API Man-
ager (PAM) object.

Figure 5. The Platform Manager logic archi-
tecture.

The Event Engine (EE) has a set of controlled coun-
teractions triggered when previous configured classes of
events occur. This has been conceived to make the plat-
form service robust and resilient. The counteractions can
be both service commands (e.g. publish a message) and
platform commands (e.g. create a SC). The first ones
are accessed by Service API Manager while the second
ones are directly accessed by PAM. The counteractions
can be created, read and deleted from users and applica-
tions throughout the Rule API Manager (RAM). Service
API Manager (SAM) is a special node that needs to be
started in a SC. It exposes APIs to external world for man-
aging service commands and events.

5. Navigation layer

5.1. Sensor fusion for odometry
Wheel odometry, in particular when using 4 wheel

drive rovers, is affected by large drift, mostly due to wheel
slipping and approximations in the velocity estimation.
We use a fusion of wheel odometry and angular velocity
measured by a gyroscope. In particular, we substitute the



Graph
Creator

graph slam

Raw
data

Graph

Node posesLocalized
scans

LAGO
Optimizer

Map
Creator

grid mapper

Figure 6. The SLAM algorithm

rotation estimate given by wheel odometry with the rota-
tion given by integration of the gyro’s velocity on the xy
plane.

Since gyros are affected by bias errors, we perform
bias estimation by averaging its value over a moving win-
dow whenever wheel odometry shows that the robot is not
moving.

5.2. Map creation

For the map creation we developed an online laser-
based graph optimization SLAM approach. The approach
is composed by three parts (Figure 6): the front-end is in
charge the construction of a pose graph; the back-end im-
plements a state-of-the-art 2D graph optimizer; the map-
per is in charge of the actual map creation. Graph edges
are retrieved using scan matching; both covariance and
geometric checks are used in order to reject bad matches.
Loop closing episodes are detected using scan matching
and geometric clues. The obtained graph is fed to a graph
optimizer every time a new loop closure is found.

In our approach we keep the mapping process sepa-
rated from the actual SLAM process. Since graph creation
and optimization phases are fast, computation time can be
considered negligible even for medium and large-scale en-
vironments. The most critical part thus becomes the cre-
ation of the actual map. By keeping the mapping process
separated we ensure scalability for larger environments.
Each time the poses from the trajectory are recalculated
by the graph optimizer, we feed the new poses, along with
the corresponding laser scans attached to a second pro-
cess, which is in charge of reconstructing the actual grid-
map by raytracing the localized laser scans. The trajectory
sent to the mapping node can be sub-sampled in order to
lower data transfer between processes and computational
time.

The source code for our SLAM algorithm is available
online1. The values for the parameters that we used In our
experiments were found experimentally and set according
to Table 1.

1https://github.com/rrg-polito/rrg-polito-ros-pkg

Table 1. Parameters used for SLAM
Parameter Value
nodeStep 10
ξth 0.01 m - 0.01 rad
∆L 10 m
θth 0.5 rad

∆tth 1 sec
εminICP 0.1
εmaxICP 0.3
τρ 2 m
τθ 0.05 rad
ξres 0.15 m - 0.03 rad

5.3. Adaptive Monte-Carlo localization
For robot localization we use the well-known Adap-

tive Monte-Carlo localization (AMCL) first proposed in
[11]. Monte-Carlo localization approaches recursively es-
timate the posterior about the robot’s pose using particle
filters. Particle filters are a sample-based implementation
of a Bayes filters, which recursively estimate the pose of
the robot pt by representing the belief Bel(pt) using a set
χt of n samples (called particles) distributed according to
Bel(pt). The pose estimated by each particle of the set is
indicated by p̂ti. Basically particle filters realize the recur-
sive Bayes filter using sampling procedures.

AMCL approaches implement a technique that reduces
the number of needed particles, called KLD sampling [11].
KLD sampling adapts the number of particles by limit-
ing the error introduced by the sample-based representa-
tion. The number of particles is chosen so that the dis-
tance between the Maximum Likelihood Estimate based
on the samples and the true posterior does not exceed a
pre-specified threshold ε. The distance between the Maxi-
mum Likelihood Estimate and the true distribution is mea-
sured using the Kullback-Leibler distance. The number of
particles at each step i is set to

ni =
1

2ε
χ2
k−1,1−δ

where χ2
k−1,1−δ is a chi-square distribution with 1 − k

degrees of freedom. This value is the required number
of particles to guarantee that with probability 1 − δ the
Kullback-Leibler distance between the Maximum Likeli-
hood Estimate of the position hypothesis and the true dis-
tribution is less than ε. This is a clear advantage in terms
of both memory occupation and computational resources.

In our system we used a modified version of the amcl
ROS package. In our version of the algorithm global lo-
calization is also possible. We use the likelihood field
laser sensor model for particle update, since it is faster and
better represent sensor readings compared to the classical
beam model, it is smooth with respect to small changes in
robot position and is better suited for small obstacles.

It should be noted that the choice of the AMCL pa-
rameters is critical for achieving low localization error,



Table 2. Parameters used for amcl ROS
node

Parameter Value
max particles 10000
min particles 500

laser z hit 0.5
laser z rand 0.5

update min d 0.1
update min a 0.25

resample interval 1

in particular with a challenging scenario. Good local-
ization is crucial for the subsequent path planning. The
most important parameter values that we use in our modi-
fied ROS implementation of the AMCL algorithm are re-
ported in Table 2. The error in laser readings caused by the
metal grids has been modeled in a trivial way by raising
the laser z hit value of the likelihood field sensor model.
The higher laser z rand value accounts for the presence of
glass-covered racks. We experimentally found that a max-
imum particle size of 10000 is enough for reliable global
localization, and a minimum of 500 is enough for model-
ing the robot pose during position tracking.

5.4. Path planning and obstacle avoidance
For path planning we use the move base ROS package.

The package implements a two-stages path planning pro-
cedure, composed by a global planner and a local plan-
ner.

Given the current robot pose, the map of the environ-
ment, and a goal to be reached, the global planner tries to
find a suitable path to the goal using Dijkstra algorithm.
Then, the local planner is in charge of locally adjusting
the trajectory for moving obstacle avoidance. The local
planner is based on the use of a rolling window centered
on the robot. Local obstacles are detected using the laser
scanner. Then, at each step, a number of local trajectories
are simulated and the best trajectory is chosen. At this
point, the local planner converts the trajectory to velocity
commands for the robot.

We found that the exact tuning of the many parame-
ters of the move base package is crucial for correct plan-
ning and is moreover very dependent on the environment
and the dynamics of the robotic platform. A tradeoff is
needed between the ability of the robot to travel in narrow
areas (such as narrow corridors between the racks) and the
use of safer distance from the obstacles in order to avoid
possible collisions. We found in our experiments that the
resolution of the rolling window has to be set higher than
default and the infation radius has to be set near the mini-
mum possible value in order to ensure the robot will pass
also in narrower corridors.

The move base package is also heavy on the computa-
tional side, so a tradeoff has to be made between accuracy
and CPU load if the package is run onboard of the robot.

Table 3. Parameters used for move base
node

Parameter Value
resolution 0.05

inflation radius 0.35
transform tolerance 3
path distance bias 1.0

The values for the most important parameters that we use
are shown in Table 3.

5.5. Docking and recharge
The Navigation layer is also in charge of homing the

robot to the recharge station when the battery is low. This
is a necessary feature for a long-term autonomous appli-
cation that has to work for days or weeks without human
intervention.

The docking system is composed by a physical part,
consisting of a station to which the robot is able to dock
and a software algorithm for precisely guiding the robot
to the station. Since the Corobot platform does not have
native docking abilities, we equipped the robot with a se-
ries of electrical pins on the front, that allow to recharge
the battery when they are in contact with a suitable station,
which has metal strips on its surface. However, in order
for the pins to be in contact with the metal on the base,
the positioning of the robot must be very precise and stan-
dard localization and path planning does not offer enough
precision for the task.

For this reason, we developed an algorithm to guide the
robot to the docking station. The algorithm uses the laser
scanner and is based on scan matching, and works under
the assumption that the initial position of the robot is near
to the docking position. For scan matching we use Censi’s
Canonical Scan Matcher [8]. The advantage of using laser
scanner for docking is twofold: first, we do not need to add
another sensor to the platform; moreover, the robot must
be able to navigate in absence of light (e.g. at night), so
traditional vision based solutions are not suitable.

The algorithm architecture is shown in Figure 7. At the
beginning, the robot is localized and placed on the dock-
ing station and laser range measures corresponding to the
docking position are captured and saved into a target scan,
as well as the robot’s pose given by localization. The Task
Manager block is in charge of starting/stopping the dock-
ing algorithm based on the battery level. When the algo-
rithm is active, at each instant the current laser range scan
is matched with the target scan and the the robot is con-
trolled in order to minimize the roto-translation between
the two scans. As an initial guess for the scan matching
algorithm we provide the difference between the current
robot pose estimated by the localization algorithm and
the pose associated to the target scan. Since the scan is
prone to failures, three consistency checks have been im-
plemented: we first check that the covariance estimated by



Figure 7. Docking algorithm architecture.

the Canonical Scan Matcher are small; then we check the
ICP error (sum of squared differences between the two
scans); finally, we check that the difference between the
initial guess and the roto-translation given by scan match-
ing is small. If any of the checks fails, no command is
given to the robot.

Another check is done on the time it takes for the robot
to dock. After a pre-defined time, if the robot had not
reached the docking station, it is sent to the last goal and
the process is repeated.

6. Experimental results

We tested the proposed system in a real Telecom Italia
S.p.A. data-center in order to prove the effectiveness of
the various components of the navigation system. The
system has been tested in two different data-center rooms
of medium dimensions during normal daily operations, in
presence of workers and small changes in the environ-
ment.

Only the ROS nodes for interfacing with sensors and
actuators run onboard of the rover, while the Navigation
and Application layers run on the remote cloud platform.
In this early stage the cloud platform is running on a dedi-
cated server equipped with an Intel Xeon processor and 4
Gb of RAM running ROS Groovy.

6.1. Experiment 1
We first tested our SLAM algorithm. As we said be-

fore, since we found that the Hokuyo laser scanner is
not accurate enough for scan matching in the presence
of metal grids and has a shorter range, we used a SICK
LMS200 laser scanner for map creation. The map was
created by manually tele-operating the robot. The result-
ing map is shown in Figure 8. The resolution of the map
is 0.05 m/pixel. The effect of metal grids and glass pan-
els can be seen as the surfaces of the racks are irregular in
some areas.

6.2. Experiment 2
In this experiment we evaluated the performances of

position tracking. We measured the localization accuracy
in three different points inside the map. The ground-truth
(position and orientation of the points) has been measured
by hand. Table 4 show that the average position and rota-
tion errors over 2 hours of operation. It should be noted

Figure 8. The created map.

Table 4. Average localization errors.

Average Point 1 Point 2 Point 3
Position [m] 0.25 0.33 0.18 0.20

Rotation [deg] 3.9 2.3 5.0 4.3

that the error is higher than the ones reported in other in-
dustrial applications [23], but are still adequate for the
subsequent path planning, as shown in the next experi-
ment.

6.3. Experiment 3
In this experiment we tested localization and path plan-

ning performances in another environment with a previ-
ously created map. A path composed by a certain num-
ber of waypoints was created. The tasks associated with
each waypoint were thermal camera image acquisition and
temperature measurement. Figure 9 shows the results of
a typical experiment. It can be noted that the robot cor-
rectly localized itself and was able to follow the given
path. The experiments was done in presence of workers
moving along the corridors, as well as obstacles which
are not present in the oiginal map (open rack doors, carts,
etc.).

7. Conclusion

In this paper, we proposed an application of laser-based
autonomous robot navigation techniques to the problem
of data-center monitoring. Our system is embedded in
a cloud-based framework based on the Robot Operating
System (ROS). We first described a simple GUI for user
interaction, then we detailed the cloud robotic platform.
Then, we described the navigation algorithm that we used
in our system, as well as the choice of parameter values,
motivated by the particular characteristics of the environ-
ment. We the showed with experimental results how the
robot is able to autonomously create a map of a previ-
ously unknown room, localize therein and execute a list
of measurements at different locations. Ongoing work is
been devoted to long-term experiments. Future work will
be devoted to autonomous exploration for coverage max-
imization and to the extension of the system to the multi-



Figure 9. Localization and path planning
performances. (a) Trajectory followed by
the robot, as estimated by localization, is
shown in blue. Waypoints are shown as
points.

robot case. By exploiting teams of robots it should be
possible to increase mapping time, coverage of the envi-
ronment and increase localization robustness.

8 Acknowledgments

This work has been done in collaboration with Telecom
Italia Lab.

References

[1] Kiva systems. Website. http://www.
kivasystems.com.

[2] Rapyuta: A platform-as-a-service framework for robots.
Website. http://rapyuta.org.

[3] Robotics in concert. Website. http://http://www.
robotconcert.org.

[4] Ros (robot operating system). Website. http://www.
ros.org.

[5] C. E. Bash, C. D. Patel, and R. K. Sharma. Dynamic ther-
mal management of air cooled data centers. In Thermal
and Thermomechanical Phenomena in Electronics Sys-
tems, 2006. ITHERM’06. The Tenth Intersociety Confer-
ence on, pages 8–pp. IEEE, 2006.

[6] B. Bona, L. Carlone, M. Indri, and S. Rosa. Supervision
and monitoring of logistic spaces by a cooperative robot
team: methodologies, problems, and solutions. Intelligent
Service Robotics, pages 1–18, 2014.

[7] K. G. Brill. Data center energy efficiency and productivity,
2007.

[8] A. Censi. An icp variant using a point-to-line metric. In
Robotics and Automation, 2008. ICRA 2008. IEEE Inter-
national Conference on, pages 19–25. IEEE, 2008.

[9] W. Choi, K.-W. Park, and K. H. Park. Scout: Data center
monitoring system with multiple mobile robots. In Net-
worked Computing and Advanced Information Manage-
ment (NCM), 2011 7th International Conference on, pages
150–155. IEEE, 2011.

[10] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W.
Levine, and H. Chan. Autonomic multi-agent manage-
ment of power and performance in data centers. In Pro-

ceedings of the 7th international joint conference on Au-
tonomous agents and multiagent systems: industrial track,
pages 107–114. International Foundation for Autonomous
Agents and Multiagent Systems, 2008.

[11] D. Fox. Kld-sampling: Adaptive particle filters. In Ad-
vances in Neural Information Processing Systems 14. MIT
Press, 2001.

[12] H. F. Hamann, M. Schappert, M. Iyengar, T. van Kessel,
and A. Claassen. Methods and techniques for measur-
ing and improving data center best practices. In Ther-
mal and Thermomechanical Phenomena in Electronic Sys-
tems, 2008. ITHERM 2008. 11th Intersociety Conference
on, pages 1146–1152. IEEE, 2008.

[13] H. F. Hamann, T. G. van Kessel, M. Iyengar, J.-Y. Chung,
W. Hirt, M. A. Schappert, A. Claassen, J. Cook, W. Min,
Y. Amemiya, et al. Uncovering energy-efficiency oppor-
tunities in data centers. IBM Journal of Research and De-
velopment, 53(3):10–1, 2009.

[14] J. Koomey. Growth in data center electricity use 2005 to
2010. The New York Times, 49(3), 2011.

[15] J. Lenchner, C. Isci, J. O. Kephart, C. Mansley, J. Connell,
and S. McIntosh. Towards data center self-diagnosis using
a mobile robot. In Proceedings of the 8th ACM interna-
tional conference on Autonomic computing, pages 81–90.
ACM, 2011.

[16] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform
heterogeneity for power efficient data centers. In Auto-
nomic Computing, 2007. ICAC’07. Fourth International
Conference on, pages 5–5. IEEE, 2007.

[17] L. Parolini, B. Sinopoli, and B. H. Krogh. Reducing data
center energy consumption via coordinated cooling and
load management. In Proceedings of the 2008 conference
on Power aware computing and systems, HotPower, vol-
ume 8, pages 14–14, 2008.

[18] C. D. Patel, C. E. Bash, C. Belady, L. Stahl, and D. Sulli-
van. Computational fluid dynamics modeling of high com-
pute density data centers to assure system inlet air specifi-
cations. In Proceedings of IPACK, volume 1, pages 8–13,
2001.

[19] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and
R. Friedrich. Smart cooling of data centers. In ASME
2003 International Electronic Packaging Technical Con-
ference and Exhibition, pages 129–137. American Society
of Mechanical Engineers, 2003.

[20] M. K. Patterson. The effect of data center temperature
on energy efficiency. In Thermal and Thermomechanical
Phenomena in Electronic Systems, 2008. ITHERM 2008.
11th Intersociety Conference on, pages 1167–1174. IEEE,
2008.

[21] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade
servers. In ACM SIGARCH Computer Architecture News,
volume 34, pages 66–77. IEEE Computer Society, 2006.

[22] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th
ACM conference on Computer and communications secu-
rity, pages 199–212. ACM, 2009.

[23] J. Rowekamper, C. Sprunk, G. Tipaldi, C. Stachniss,
P. Pfaff, and W. Burgard. On the position accuracy of
mobile robot localization based on particle filters com-
bined with scan matching. In Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on,
pages 3158–3164, Oct 2012.

http://www.kivasystems.com
http://www.kivasystems.com
http://rapyuta.org
http://http://www.robotconcert.org
http://http://www.robotconcert.org
http://www.ros.org
http://www.ros.org

	. Introduction
	. Robotic platform
	. System architecture
	. Application layer
	. Graphical User Interface
	. The cloud architecture

	. Navigation layer
	. Sensor fusion for odometry
	. Map creation
	. Adaptive Monte-Carlo localization
	. Path planning and obstacle avoidance
	. Docking and recharge

	. Experimental results
	. Experiment 1
	. Experiment 2
	. Experiment 3

	. Conclusion
	Acknowledgments

